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ABSTRACT

In recent years many tools have been developed to cope with the interpretation of gene expression results from
microarray experiments. The effectiveness of these tools largely depends on their ease of use by biomedical
researchers. Tools based on effective computational methods, indeed, cannot be fully exploited by users if they are
not supported by an intuitive interface, a large set of utilities and effective outputs.

In this paper, ten tools for the interpretation of gene expression microarray results have been tested on eleven
microarray datasets and evaluated according to eight assessment criteria: 1. interface design and usability, 2.
easiness of input submission, 3. effectiveness of output representation, 4. efficacy of the downloaded outputs, 5.
possibility to submit multiple gene IDs, 6. sources of information, 7. provision of different statistical tests and 8.
supply of multiple test correction methods. Strengths and weaknesses of each tool are highlighted: a. to provide
useful tips to users dealing with the biological interpretation of microarray results; b. to draw the attention of
software developers on the usability of their tools.

Key words
Microarray * Pathway analysis ® Data mining * Usability * Output representation

Abbreviations
DEG: Differentially Expressed Gene * GO: Gene Ontology

Background

Oligonucleotide and cDNA microarrays are high-
throughput techniques that compare the mRNA
expression of a large group of genes in different
cells or experimental conditions. The final output of
a microarray data analysis is a list of codes identify-
ing differentially expressed transcripts. Interactions
among genes, however, are not adequately repre-
sented by a list of codes. Therefore, the following
step of a microarray experiment is the biological
interpretation of results to formulate hypotheses on
the molecular mechanisms underlying the investi-
gated biological phenomenon.

To deal with this challenging task, users submit
the complete list of differentially expressed genes
(DEGs) to several bioinformatics tools that query
specific databases of biological information. By
these tools, the investigators usually expect to
obtain: a) an exhaustive annotation of as many as
possible DEGs, b) an effective visualization of the
biological interactions among DEGs, ¢) some sug-
gestions on what are the most important groups of
interacting DEGs and the biological processes in
which they are involved. To date, a tool that meets
all these requirements does not exist and users have
to cope with many different tools in order to obtain
all the needed information.
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The first attempt to schematize biochemical interac-
tions among genes, so-called “pathway”, was done
by Goto and colleagues (Goto et al., 1997) who used
binary relations between genes or gene products
as components of the network. They drew the first
metabolic pathway thus creating the KEGG database
(Ogata et al., 1999). In KEGG, any new evidence on
gene interactions is subjected to a careful verifica-
tion by curators.

A different approach was adopted by BioCarta
founders in 2000. They developed one of the first
examples of Web 2.0 technology, as information
is submitted by users, who remain traceable, and
is managed by the scientific community. BioCarta
provides rules to govern user collaboration and guar-
antees two levels of information care. The first level
is assigned to all contributors, who send feedbacks
on the submitted pathways. The second level of
information care is assured by “Gurus”, a restricted
community of certified contributors, who evaluate
the accuracy of the most popular pathways.
Similarly to BioCarta, GenMAPP (Dahlquist et al.,
2002; Salomonis et al., 2007) is a free stand-alone
computer application working both as a database
and software. GenMAPP organizes data in path-
ways, called MAPPs, and allows users to identify
gene networks in their own microarray data. MAPPs
are drawn based on textbooks, review papers and
public databases like Ensembl.

Finally, lists of functionally related genes are also
generated by the Gene Ontology Project (Gene
Ontology Consortium, 2001). The Gene Ontology
(GO) database derives from a joint effort of scien-
tific community that created a dynamic framework
and a unified vocabulary to annotate genes by gene
products. The three ontologies, Molecular Function,
Biological Process and Cellular Component, allow
scientists to univocally annotate genes in different
biological contexts. Although the aim of GO is not
building biological networks of interactions, finding
a consistent group of DEGs mapped in the same
Biological Process category suggests that they are
involved in the same molecular mechanism. The GO
information often completes the picture provided by
KEGG, BioCarta and GenMAPP in terms of bio-
logical interpretation.

“Pathway analysis” strictly refers to the analysis that
uses the information contained in pathway databases
like KEGG, BioCarta and GenMAPP. When GO

information is used, the performed analysis is called
“Functional analysis”. Keeping in mind this distinc-
tion, hereafter the term “pathway analysis” will be
used to indicate the analysis that exploits both path-
way and GO information, as already done by other
authors (Khatri et al., 2012).

Pathway analysis can be performed by two enrich-
ment approaches (Dopazo, 2006; Huang et al.,
2009): the cut-off dependent and the cut-off free
approaches, respectively adopted by the over-repre-
sentation (Khatri and Draghici, 2005) and the func-
tional class scoring (Goeman et al., 2004; Pavlidis et
al., 2004) methods of analysis.

Tools adopting the first approach are focused on
DEGs lists. They associate a value of statistical
significance to the over-representation of groups of
DEGs in some pathways or GO categories by using
statistical tests (Khatri and Draghici, 2005). Tools
adopting the second approach use the complete
list of gene expression data to score selected gene
sets from KEGG, GO or MSigDB, filtered by non-
specific methods and ranked by their differential
expression values. They calculate the gene set and
DEGs enrichment scores and associate a value of
statistical significance to them by sample random-
ization methods and Kolmogorov-Smirnov test,
respectively (Nam and Kim, 2008).

In both the approaches, the statistically significant
pathways or categories or gene sets are assumed
to be the most important for the biological inter-
pretation of microarray results. Universally valid
statistical tests or multiple test correction methods
do not exist and users have to choose them based
on the experiment characteristics. For more details
see (Dudoit et al., 2004; van der Laan et al.; 2004,
Khatri and Draghici, 2005; Khatri et al., 2012).

A completely different approach to build interac-
tion networks among biological entities is provided
by mining heterogeneous sources of information
using data mining techniques (Jelier et al., 2003;
Hoffmann et al., 2005; Krallinger et al., 2008; Jelier
et al., 2011). We refer to this kind of analysis as
“gene network analysis”.

Data mining tools, through the analysis, extrac-
tion and visualization of information contained in
free-text and/or heterogeneous sources, provide
researchers with an integrated and effective view
of the biological information emerging from the
gene lists. MEDLINE is the primary source of pub-
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lished papers. A list of identifiers like gene names,
keywords, etc. must be supplied to perform text
mining by MEDLINE. Data mining tools usually
annotate the submitted information using a variable
number of databases to find synonyms and make the
search as exhaustive as possible. The list of identi-
fiers is then exploited by text mining tools to find
documents and to tag in the text biological entities.
Computational algorithms able to perform gram-
matical or morphological analyses are used to build
interaction networks among entities. Databases of
biological interactions, like MIPS (Mewes et al.,
2011), BIND (Bader et al., 2003), HPRD (Prasad et
al., 2009), IntAct (Aranda et al., 2010) and databases
of pathways and ontologies are used as benchmarks
to validate the literature networks from a biological
point of view. At the same time, this information can
be used to annotate the networks and provide a wide
selection of biological evidences.

Many tools have been implemented to make easier
the biological interpretation of microarray results.
A full review of all the tools or classes of meth-
ods is beyond the purpose of this paper, as many
technical reviews on this topic already exist (see
Nam and Kim, 2008; Werner, 2008; Abatangelo
et al., 2009; Huang et al., 2009; Jelier et al.; 2011,
Faro et al.; 2012, Hung et al.; 2012, Khatri et al.,
2012). However, up to date no author has examined
these tools from the end-users point of view. Since
a frequent issue in using these tools is the limited
or incomprehensible accompanying documentation,
this paper aims to provide to everyone dealing with
the interpretation of microarray results a useful
guide to make an appropriate choice among the
available tools. Our purpose is also to illustrate to
software developers strengths and weaknesses of
tools pointed out by end-users, in order to connect
users’ requests and developers’ strategies.

Ten freeware tools were selected, each compliant
to five mandatory criteria (Table I). They represent
different bioinformatics solutions to the biological

interpretation of microarray data. Eight items (listed
in Table II) were adopted to characterize and score
each tool (see Supplementary data 1 for details on
score calculation) and a hands-on evaluation using
11 DEG lists from as many microarray studies was
performed (see Supplementary data 2 for details on
DEG lists). In order to make the tool evaluations
independent from a specific case study, the 11 data-
sets were selected from microarray experiments on
different topics. For the data mining tools, several
biological entities (keywords, gene names, etc) rel-
evant to the experiments were chosen. Finally, we
suggest a workflow to use the most effective tools
among those selected.

Tools for the Biological Interpretation
Task

Sixty tools were retrieved by screening 275 papers
from PubMed and several links from Google. After
removing tools adopting the same computational
method or similar implementation solutions and
those largely reviewed by other authors, 10 tools
compliant with our mandatory criteria were selected:
Pathway Miner (Pandey et al., 2004), WebGestalt-
KEGG enrichment analysis (Zhang et al., 2005),
KOBAS 2.0 (Wu et al., 2006), Pathway-Express
(Draghici et al., 2007), KegArray (Wheelock et
al., 2009), Onto-Express (Khatri et al., 2002) and
WebGestalt-GO enrichment analysis (Zhang et al.,
2005) for the pathway analysis, Coremine, FunDO
(Osborne et al., 2009) and GNCPro (Liu et al., 2010)
for the gene network analysis. A summary of Scores
1 and 2 totalized by each tool is shown in Tables I1I
and IV. The complete tool evaluation is available in
Supplementary data 3.

In the last few years, many tools for pathway
analysis implemented the cut-off free enrichment
approach. The strength of cut-off free tools is that
they preserve the complete network of dependen-

Table I.- Mandatory criteria for tool selection

1.To be royalty-free.

2.To accept as input a list of DEGs.

3.To have a functional web-based application.

4.To require no programming skills to be used.

5.To be not specific fo one organism (except for Homo sapiens) or a single microarray platform.




BIOLOGICAL INTERPRETATION OF MICROARRAY DATA 79

Table II.- Description and index definition of adopted evaluation items.

Characteristic Description

Score

1) Interface Design and Usability

The ability of a tool to be intuitive or to allow
users to learn to use it easily, that is how much
the tool design is end-user oriented

Mean of users’ scores

2) Easiness of Input Submission

Infuitiveness and flexibility in input data
formatting and submitting

Mean of users’ scores

3) Output Representation
Effectiveness

@hH

*[...] despite the vastness of an information
structure, the view must be small, moving
around must not take too many steps and the
route to any target must be discoverable [...]"

Mean of users’ scores

4) Downloaded Output Usefulness

Usefulness of the downloaded report

Mean of users’ scores

5) Opportunity to submit Multiple
input ID Types

The use of a gene code conversion fool is not
pre-required, as multiple input IDs are allowed

Normalized Number of multiple ID

6) Sources of Information
information

Databases from which the tool extracts

Normalized Number of sources
of information

7) Availability of different Statistic

Many statistics are available fo allow users fo
make a choice depending on the size of the
gene reference background of the analysis (13)

Normalized Number of statistical
distribution available

8) Availability of Multiple Test
Methodss

Many methods are supplied to contain Type |
error rate in assessing the statistical significance

Normalized Number of multiple
fest correction methods

cies among genes by submitting the full list of
genes assayed by a microarray. However, they use
re-sampling methods to achieve the statistical sig-
nificance of gene-sets thus performing worse with
very few samples. Concerning the experiments on
the most studied organisms, Homo sapiens, Rattus
norvegicus and Mus musculus, without taking into
account the experimental design, the percentage of
microarray studies in ArrayExpress realized with

more than 20 samples are 40%, 37% and 25%,
respectively. It follows that, for most of the avail-
able microarray experiments, the results provided by
the cut-off free tools must be carefully interpreted.
Moreover, microarray results obtained by complex
experimental designs, like indirect comparisons or
comparisons of more than two conditions, cannot be
submitted to cut-off free tools due to their complex
statistical framework.

Table lll.- Summary of scores totalized by each ool using evaluation items 1)-4).
The values of Kendall's W (K's W), showed in round brackets for each item, were all significant and evidenced a good
concordance among raters.
Infgﬂoce Easiness Output _ Downloaded
Design and of Input Representation
Tool Name " S . Output Usefulness | Score 1
Usability Submission Effectiveness (K's W: 0.58)
(K's W: 0.65) (K's W:0.74) (K's W: 0.55) T
% WebGestalt-KEGG 3.5 3.75 3.75 3.5 14.5
% Pathway-Express 3.5 2.75 3.75 2 12
g. Pathway Miner 3 2.75 3 11.75
g KOBAS 2.0 2.75 2 1 7.75
=) KegArray 1.5 1.5 2.5 2 7.5
E WebGestalt-GO 3.5 3.75 3.75 3.5 14.5
& Onfo-Express 3.25 3 3.5 3 12.75
X .2 GNCPro 3.5 2 3 2.75 1
oQe
8 25 8 | Coremine 2.25 2.75 2.75 3 10.75
O C
zZ< FunDO 3.75 4 2 1 10.75
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Table IV - Summary of scaled scores totalized by each tool using evaluation items 5)-8).
For each class, fools are ranked on descending Score 2. See Supplementary data 3 for detailed information.
Tool Name ID Types Sources of Stafisies || comootion. Score 2
methods
2 WebGestalt-KEGG 4 3.5 0.8 4 12.3
Q KOBAS 2.0 1.33 3 4 2.4 10.73
é Pathway-Express 3.73 0.25 2.4 3.2 9.58
§ KegArray 1.6 0.25 0 1.85
=) Pathway Miner 0.26 0.75 0.8 0 1.81
E WebGestalt-GO 4 0.25 0.8 9.05
2 Onto-Express 1.86 0.25 16 3.2 6.91
© %4 éi’ Coremine 1.06 4 0.8 0 5.86
é % g § FunDO 0.53 0.25 0.8 0.8 2.38
z< GNCPro 1.06 0.5 0 0 1.56

Cut-off dependent tools accept lists of DEGs as
input and assume that there is no dependency among
genes. This kind of approach could increase the
number of false positive results. On the other hand,
these tools manage all the microarray experimental
designs and with small datasets produce more reli-
able results than cut-off free tools (see Goeman and
Biihlmann, 2007; Rivals et al., 2007; Nam and Kim,
2008; Huang et al., 2009; Gatti et al., 2010).

We focused on web-based application tools since
tool installation represents the first problematic step
for many users. They are, indeed, discouraged when
files, libraries or databases must be locally installed
and manually connected or updated. The downside
is that the usage of web-based application tools
depends on the tool server maintenance downtime.

Pathway analysis tools
Pathway Miner

Pathway Miner is one of the first attempts at min-
ing gene co-regulation networks. Annotation data
available in Pathway Miner are updated from NCBI
dbEST, Unigene and Entrez Gene.

Pathway Miner supplies a plain interface for micro-
array data or keyword submission. It accepts only
the GenBank Accession Number code as input ID,
the most used IDs by microarray suppliers.

It provides a clear results summary page reporting
the number of mapped genes and pathways for each
source of information. Detailed results are obtained
browsing the pathway images, where mapped genes
are highlighted. This visualization is effective to

individuate groups of interacting DEGs and the
automatically locally savable images provide a suit-
able analysis report.

For each source of information the downloaded
report contains the GeneSymbol list and accession
numbers of mapped genes. In addition, the complete
web page is locally savable by the browser saving
options, including all the hyperlinks to external
databases.

The distinguishing strength of this tool is that it sup-
plies pathway information from KEGG, BioCarta
and GenMAPP, which are the databases to date
available that contain information on biological
pathways. However, no multiple test correction
methods are provided, thus a priori hypotheses on
pathways or functional categories are needed.

KOBAS 2.0

KOBAS 2.0 uses KEGG ORTHOLOGY as con-
trolled vocabulary for gene annotation. It takes as
input a list of gene codes or sequences in FASTA
format that annotates using several databases. The
chance to submit FASTA sequences is unique and
represents the strength of KOBAS 2.0, concerning
microarray studies on poorly annotated organisms.

KOBAS 2.0 results are obtained by the annotation
and the identification steps. Although the interface
is not fully intuitive and the annotation step does
not accept gene IDs frequently used by microarray
suppliers, the available heterogeneous sources of
information provide an exhaustive annotation of the
submitted gene list. The identification step provides
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the statistically enriched pathways by using as input
the annotation step output. The available statistical
test set is really complete. However, although the
provided list of enriched pathways and biochemical
interaction networks is exhaustive, no map repre-
senting the mapped genes is included. Moreover, all
the hyperlinks to databases are removed from the
locally saved tables and the user needs to rerun the
analysis every time.

KegArray

KegArray was selected although it is a stand-alone
Java application as it has been developed by KEGG
developer team. This tool is designed for integrated
analysis of KEGG EXPRESSION data. It also
maps microarray results in KEGG pathways but
only using KEGG EXPRESSION data as template.
Details on the usage of its not fully intuitive inter-
face are provided in the help documentation.

KegArray appears the most effective tool in map-
ping genes (see Table V), a characteristic really
appreciated by users dealing with the biological
interpretation task. As evidenced in (Draghici et al.,
2000), this ability is due to several elements includ-
ing the pathway update frequency and the type of
ID used to query the pathway database. KegArray
accepts only KEGG GENE IDs that are not usual but
that proved to be very effective for gene expression
data, based on the performance evidenced in this
paper. They are obtained by the KegArray ID con-
version tool, using IDs from NCBI GI, Entrez Gene,
UniGene, UniProt and IPI databases. We were not

able to obtain the conversion of GenBank codes,
which are among the most used gene ID.

The KegArray result is a list of pathways where
groups of DEGs are mapped. Each pathway name
is linked to the KEGG pathway image with the
mapped genes highlighted. The output cannot be
saved in file format. However, as no statistical test
is provided, it should only be used in an exploratory
manner since it does not give any suggestion on
which are the most significant pathways.

Pathway-Express

Pathway-Express, one of the most advanced path-

way analysis tools, associates to the pathways a

statistic called “Impact Factor”, based on a sys-

tem biology approach. This approach schematizes

pathways like networks and considers the different

molecular effect of diverse interactions/reactions

between genes and/or gene products, i.e. activation,

ubiquitination, glycosylation, etc.

The calculated Impact Factor derives from:

a) the number of DEGs in the pathway compared to
the total number of genes in it;

b) the extent of the displacement from the pathway
signaling steady state;

c) the location of the mapped DEGs within the path-
way topology.

a) determines how much the mapped genes are rep-

resentative of the whole pathway; b) estimates the

level of network perturbation due to gene expres-

sion changes and to the different molecular effects

produced by diverse gene-gene interactions/reac-

Table V.- Normalized citation indices, percentage of mapped genes and Total Score.
For each class, tools are ranked on descending Total Score.
. Normalized
Tool Name Ngrmqllzed H Scopus Citation WETEIEEG geones Total Score
Citation Index (average %)
Index
2 WebGestalt-KEGG 35.16 30.66 30.27 26.8
Q Pathway-Express 37.25 30.75 21.98 21.58
)
<L KOBAS 2.0 10.6 9.4 NA 18.44
g Pathway Miner 7.71 6.57 28.79 13.56
§ KegArray 4.8 2.8 37.76 9.35
£ Web-Gestalt-GO 35.16 30.66 66.48 23.55
&)
a Onto-Express 27.88 25.44 85.68 19.66
X ® Coremine NA NA 61.4 16.61
Loge
6258 | FunhDO 55 6 31.43 13.13
0B crl
z< GNCPro NA NA 49.88 12.56
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tions; c) considers that expression changes of genes
upstream located in the pathway topology affect
the pathway more than those of genes downstream
located. To date, the Impact Analysis is the only
technique that puts together statistical and biological
features to provide an index of pathway perturbation
due to gene expression changes.

Therefore, even if Pathway-Express implements
a cut-off dependent approach, it considers depen-
dencies among DEGs and for this reason it is
more appropriately numbered among the Pathway
Topology-based tools (Khatri et al., 2012).

The data submission interface of Pathway-Express is
intuitive. Information about file format and ID types
is available via a FAQ link. The list of genes assayed
on custom or commercial arrays can be selected
in the drop-down menu and used as reference for
over-representation analysis. Many KEGG signaling
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pathways are exploited by this tool, whereas meta-
bolic pathways are not considered. While the basic
information submission does not require any par-
ticular expertise, setting advanced options is more
complicated and not explained at all.

Many statistical distributions and multiple test cor-
rection methods are available.

The output consists of two windows. Four sub-
windows form the first one and contain the pathway
analysis results (Fig. 1), while the second one shows
the retrieved pathways, in which the mapped DEGs
are highlighted (Fig. 2). The sub-windows can be
saved separately, but all the reciprocal links are lost.
The pathway images can be locally saved in image
format only one by one and losing the essential
hyperlinks to KEGG. A saving option of the analysis
as a project might be useful in order to not rerun the
analysis every time.
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Fig. 1. - Output of Pathway-Express.

The four reciprocally linked sub-windows produced by Pathway-Express after the submission of dataset D8 are

shown.
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ch Cell cycle - Homo sapiens (human)

[ Pathway menu | Organism menu | Pathway entry | Download KGML | Hide description | User data mapping ]

Mitotic cell cycle progression is accomplished through a reproducible sequance of events, DNA replication (S phase)
and mitesis (M phase) separated temperally by gaps known a5 G1 and G2 phases. Cyclin-depandent kinases [CDKs)
are key regulatory enzymes, each consisting of a catalytic CDK subunit and an activating cyclin subunit. CDKs
regulate the cell's progression through the phases of the cell cycle by medulating the activity of key substrates.
Downstream targets of CDKs include transcription factor E2F and its regulator Rb. Precise activation and
inactivation of CDKs at specific points in the cell cycle are requirad for orderly cell division. Cyclin- CDK inhibitors
(CKIs), such as p16ink4a, p15Ink4b, p27Kipl, and p21Cipl, are involved in the negative regulation of CDK
activities, thus providing a pathway through which the cell cycle is negatively regulated.

Eukaryotic cells respond te DNA damage by activating signaling pathways that promote cell cycle arrest and DNA
repair. In response te DNA damage, the checkpoint kinase ATM phosphorylates and activates Chk2, which in turn
directly phosphorylates and activates pS3 tumor suppressor protein. pS3 and its transcriptional targets play an
important role in both G1 and G2 checkpoints. ATR-Chk1-mediated protein degradation of Cdc25A protsin
phosphatase is also a mechanism conferring intra-S-phase checkpoint activation.
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Fig. 2. - A pathway map by Pathway-Express.

The map highlights the differentially expressed genes. Down-regulated genes are in blue and up-regulated genes

in red.

Onto-Express

Onto-Express helps users to mine the available func-
tional annotation data and find relevant functional cat-
egories. For each functional category, represented by
a node in the trees schematizing the three ontologies,
this tool calculates two different p-values. The first

one is the collapsed p-value, calculated on the number
of mapped genes, compared to those totally involved
both in the considered node and its child nodes. The
second one is the expanded p-value, calculated on the
number of genes mapped, compared to those totally
involved only in the considered node. This double
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statistical evaluation is the Onto-Express strength and
allows users to decide the level of depth of their analy-
sis. The interface design, file format, ID types and sta-
tistical options are similar to that of Pathway-Express.
The full GO database or user selected ontologies can
be set as reference for the analysis.

A full set of views is provided by Onto-Express to
support users in result visualization and interpretation.
Among the most informative there are the Tree View,
the Flat View and the Single Gene View (Fig. 3).

For the Biological Process ontology, two locally
savable analysis reports are available. The first one
shows the tree structure and for each functional cat-
egory lists the p-values and the number of mapped
genes but not their names (IDs). The second one
contains the same information plus the mapped
genes for each functional category, but loses the tree
structure. As both nesting levels and mapped genes
are fundamental for the biological interpretation of
DEGs, an integrated report would be more useful
from an end-user point of view, especially if a large
number of functional categories is statistically sig-
nificant and user needs to frequently jump between
the two reports to integrate the information.

WebGestalt

WebGestalt V2 is an intuitive tool that provides an
easy way for researchers to have an integrated over-
view on large sets of genes. It consists of four mod-
ules: gene set management, information retrieval,
organization/visualization and statistics.
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The gene set management module allows the user to
easily upload lists of many different gene IDs and
to manage them making the data formatting process
simple. The information retrieval system retrieves
annotations from up to 20 sources by the local data-
base GeneKeyDB (Kirov et al., 2005). By exploiting
the organization/visualization module, the annotated
list can be subjected to several kinds of analysis,
including Gene Ontology, tissue expression pattern,
chromosome distribution, metabolic and signaling
pathways and protein domain.

GO enrichment analysis performs the over-repre-
sentation analysis of DEGs in GO categories and
produces three directed acyclic graphs (Fig. 4). Each
enriched category is linked to the list of mapped
genes. This view is effective in helping users to
retrieve at a glance the core information to be used
for biological interpretation of the data. Details on
the enriched categories and mapped genes are col-
lected in a locally savable table.

Similarly, KEGG enrichment analysis performs the
over-representation analysis of DEGs in KEGG path-
ways. For each statistically relevant pathway an
exhaustive annotation of the mapped genes and a use-
ful pathway visualization with the highlighted genes
are reported. All these tables can be locally saved.
For both analyses the complete web pages can be
saved, thus obtaining an effective report hyperlinked
to all the available data sources.

Hypergeometric distribution and Fisher’s exact test
are supplied and users can select different signifi-
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Fig. 3. - Tree View, Flat View of Biological Process ontology and Single Gene View of SMAD3 gene by Onfo-Express.
The Tree View displays the results in a tree diagram where the three principal branches represent the ontologies
from GO Consortium. Each node can be expanded to find statistically significant ferms and the mapped genes.
The Flat View visualizes for a selected ontology the p-values and the percentage of DEGs by a bar graph. The Single
Gene View shows GO terms where a selected gene has been found.
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Fig. 4. - Directed Acyclic Graphs by WebGestalt-GO enrichment analysis.
The Directed Acyclic Graphs provided by WebGestalt-GO enrichment analysis after the submission of dataset D8.
The staftistically significant categories are highlighted in red.

cance levels for the statistical analysis and specify
how many genes a category has to contain to be
highlighted as statistically significant in the directed
acyclic graphs.

Several multiple test correction methods are pro-
vided.

Gene Network Analysis Tools
FunDO

FunDO adopts text mining techniques to associ-
ate a list of DEGs with diseases from the Disease
Ontology (DO) database. The association is per-
formed by using the NCBI GeneRIF database
(Mitchell et al., 2003) information, thus a greater
number of gene-disease associations are available
than that given by OMIM. This tool is mostly effec-
tive when the a priori hypotheses of the experiment
concern a disease. Nevertheless, in the absence of
any a priori hypothesis, the associations between
genes and diseases suggest molecular mechanisms
to further investigate by pathway analysis or other
gene network analysis tools.

FunDO interface is plain and the list of human
Entrez or GeneSymbol IDs is directly pasted in the
text box input field. The output is a locally savable
Java window consisting of two parts: a network,

where the top five DO terms and the submitted genes
associated to them are represented, and a table that
summarizes the association results. The result view
supplied by FunDO highlights what are the most
represented DO terms in the submitted DEG list
(Fig. 5). However, the edges are not linked to any
URL providing the association by GeneRIF. The
complete list of genes collected by GeneRIF and the
subset of associated genes are shown in the table.
The GeneSymbol codes are linked to their Entrez
IDs. The over-representation of groups of submitted
genes for each DO Term is evaluated by Fisher’s
exact test and corrected by Bonferroni method.

GNCPro

GNCPro is a free data integration and visualization
tool, developed and maintained by SABiosciences
(SABiosciences, Frederick, MD, USA). This tool
creates networks of heterogeneous information built
based on binary relationships between human genes.
The considered relationships concern but are not
limited to functional and transcriptional regulation,
co-expressions, chemical modifications, physical
interactions, interactions reported by literature. The
results visualization is very effective in helping user
to formulate biological hypotheses due to the eas-
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Fig. 5. - Gene-disease network by FunDO.

The diameters of the red spofts representing DO terms suggest which are the most represented diseases, as they
are proportional fo the number of genes associated. Text mining analysis from FunDo shows that the submitted

dataset D7 is primarily related to breast cancer.

ily retrievable information on groups of interacting
genes, the types of relationships involved and the
documentation confirming the association (Fig. 6).

GNCPro builds networks based on three types
of techniques: text mining, data mining and data
acquisition. Text mining splits PubMed abstracts
into sentences and then into single words. A curated
vocabulary of human genes is used to retrieve bio-
logical entities and a dictionary of words concerning
interactions allows the identification of different
kinds of relationships. An extensive manual check-
ing of text mining results has been performed by
the GNCPro team. Data mining and acquisition
mine heterogeneous sources of information to build
additional relationships among the submitted genes.
Protein-protein interaction data from HPRD and
ProLinks as well as microarray gene expression
data from GEO are acquired to build interactions
and annotate the network. Genes co-expression
data are mined from GEMMA and from papers on

microarray experiments. Predicted relationships are
extracted by prediction algorithms, based on the
evolution theory (Marcotte et al., 1999; Pellegrini
et al., 1999).

GNCPro also suggests to the user new genes con-
nected to those submitted (Fig. 6), which helps to
bridge gaps among submitted genes and to formu-
late new hypotheses. Moreover, GNCPro makes
available other biochemical networks, i.e. KEGG,
Reactome, NCI and SABiosciences PCR array path-
ways, to provide further information on the submit-
ted genes.

A set of utilities is supplied to carefully investigate
each gene. Gene Network Central builds interac-
tion networks starting from a single submitted gene.
Gene Name Translator translates a gene ID in sever-
al gene codes. Gene ID Explorer summarizes NCBI
Gene information. Tissue Expression Viewer pro-
vides the level of gene expression in several tissues.
GNCPro interface is simple and allows users to
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Fig. 6. - Gene network by GNCPro.

The graphical representation of each relationship is an oriented colored edge located between two blue nodes
that represent known submitted genes. Unknown submitted genes are indicated by red squares. Genes added by

GNCPro are represented in the network as gray diamonds.

paste a list of codes into the text box input field.
Up to 125 human gene codes can be submitted
simultaneously, while no keyword is accepted in
addition to the DEGs list. Although the network
can be easily managed to draw a comprehensible
view, the only possibility to exclude genes from
visualization is to uncheck them one by one by the

advanced options. Different kinds of information
are exportable from the network: the annotated
lists of submitted genes and interactions are the
most useful. Finally, no statistical test is supplied
to measure the strength of the interactions, thus
making GNCPro a useful tool to essentially gather
heterogeneous information.
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Coremine

To date, no paper concerning Coremine has been
published but some supporting documentation is
available in the help page. Coremine derives from
PubGene (Jenssen et al., 2001), which represents
the first attempt to create a human gene-to-gene
co-citation network by mining PubMed titles and
abstracts. It annotates each gene by the MeSH
(Medical Subject Heading) indices and the GO
database. Assuming that a biological relationship
between two genes co-mentioned exists, PubGene
builds a curated literature co-occurrence network,
where nodes represent the genes and edges the
mined information.

The first important improvement of Coremine com-
pared to PubGene is the number of sources and of
biological entities that can be submitted. Coremine,
indeed, uses 16 different sources of information to
build a “map of concepts” among the biological
entities derived from 13 different categories. Due to
its ability to find and connect an impressive amount
of information, Coremine is considered a full bio-
medical search engine able to perform an integrative
analysis among heterogeneous biological entities.
Around 300 GeneSymbol IDs can be uploaded
with an unlimited number of keywords from the
available biological categories. When a DEG list is
submitted, Coremine works either in a supervised
or an unsupervised way to individuate issues for
data interpretation. When one or more keywords are
submitted together with a list of genes, Coremine
links together genes, keywords and biological enti-
ties from categories chosen by the user. If no a priori
assumptions are formulated and no other categories
are selected, Coremine works in an unsupervised
manner building the map of concepts among the
genes. If no genes but only keywords are submitted,
Coremine produces a map of concepts among them,
the most co-mentioned genes and/or other biological
entities from the selected categories.

Many tools are available. The Library tool allows
user to build a map of concepts among the submitted
biological entities by mining either all MEDLINE
publications or a group of papers selected by the
user. The Genomic HyperBrowser (Sandve et al.,
2010) tool connects Coremine to Galaxy (Giardine
et al., 2005), an open web-based research and analy-
sis platform for biomedical data that allows users to
perform an integrated analysis of biomedical data.

It also provides lists of genes associated to the bio-
logical entities submitted by users. For each gene a
p-value is calculated based on the binomial distri-
bution and representing the gene-entity association
strength. The File upload tool manages the submis-
sion of a DEG list to Coremine.

At a first glance, the Coremine interface may con-
fuse users, as, to make a submission, many options
seem necessary to select. However, for a simple
search, is sufficient to type just a GeneSymbol or
a part of a gene name or a keyword in the text box
input field. Coremine helps users in the submission
suggesting alternatives from the 13 available bio-
logical categories in the drop-down menu. However,
if a quite targeted search is desired, it is advisable to
uncheck the categories considered uninteresting for
the study.

The Coremine output consists of two views: the
network view and the grid view. In the network
view, the submitted biological entities are repre-
sented by nodes and the gathered information by
edges. By clicking on a specific node, the so-called
Facts, short information from the NCBI databases
are shown. To retrieve information underlining a
connection between two nodes, the so-called Hits,
all links to the 16 sources of information are shown.
The network view is an effective graphical solu-
tion but it becomes difficult to manage when many
biological entities are submitted. This limitation can
be overcome by exploiting a priori information or
hypotheses, i.e. suggested by the pathway analysis.
The grid view is useful to summarize information
from a crowded network. It divides into two tables
showing the linked entities and the connections. As
in the network view, each element is linked to Facts
and Hits (Fig. 7).

Although the views are not automatically savable,
the map of concepts can be saved as a project in
the user’s personal page, then can be reloaded and
modified every time Coremine is accessed.

Performances in DEG mapping

The usefulness of a bioinformatics tool to formu-
late biological hypotheses depends on the body of
retrieved information that, in turn, depends on the
number of genes that the tool is able to annotate
and map in networks of interactions. The number of
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mapped DEGs depends on: a) the number and kind
of queried sources of information; b) their updat-
ing frequency; c) the methods to query the sources;
d) the native ID type used by the tool to query the
source of information. The average percentage of
DEGs mapped by each of the investigated tool, for
the 10 tested datasets, is reported in Table V.

The adoption of multiple tools for the analysis guar-
antees the fullest possible coverage of all the avail-
able information. For further details see (Draghici et
al., 2006).

What tool/tools to use?

Based on the scores (Tables III, IV and V),
WebGestalt-KEGG enrichment analysis appeared to
be the most effective pathway analysis tool, followed
by Pathway-Express. However, only their joint uti-
lization mapped in KEGG the 37% of DEGs on
average. The addition of Pathway Miner mapped the

47% of DEGs on average. This extra 10% is because
Pathway Miner queries BioCarta and GeneMAPP
databases in addition to KEGG. However, although
Pathway Miner totalized a high Score 1, that means
a positive feedback by users, its inadequate Score 2
(see Table IV) highlights some technical limitations
that should be taken into account.

KegArray showed good performance in mapping
genes (38% on average), but totalized the lowest
scores (see Tables III, IV and V). It should be used
only as an exploratory tool, as no statistical tests
are run and no suggestions on the most significant
pathways are provided.

KOBAS 2.0 is the only tool that accepts sequences in
FASTA format as input and identifies unknown genes
from poorly studied genomes using BLAST algo-
rithm. It appears a good performing tool if we consider
its Total Score, but its high ranking is only due to
Score 2 (see Table 1V). Its low Score 1 suggests that
KOBAS 2.0 does not address the end-user require-
ments, especially in terms of output effectiveness.
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Onto-Express and WebGestalt-GO enrichment anal-
ysis performed in a comparable way (Tables III and
IV), retrieving Biological Process GO terms for,
respectively, 86% and 66% of DEGs on average.
This difference is probably due to the different used
GO databases (GO or GO slim see Supplementary
data 3). In general, the GO tool better performances
compared to the pathway analysis tools in mapping
genes are due to the larger number of genes anno-
tated in GO database.

No relevant difference among the tools for gene
network analysis emerged considering their Score 1.
However, the Score 2 indicated that Coremine out-
performed FunDO and GNCPro in terms of avail-
ability of information sources (Table IV). Moreover,
Coremine linked the 61% of DEGs on average to the
submitted keywords. The statistical methods adopted
by the gene network analysis tools, however, should
be improved as appears from Table IV. To date, a
framework for proper statistical evaluation of the
associations between genes and literature concepts is
still lacking, although some promising methods have
been recently proposed (Jelier et al., 2011).

Coremine (132)

The normalized citation indices shown in Table V,
utilized as a posteriori validation of our evaluation
process, evidenced a gap similar to that identified by
Score 1 and 2 between the best and the worst per-
forming tools. Moreover, all these indices highlight-
ed that generally the gene network analysis tools are
less frequently used than the pathway analysis tools.
Neither on the basis of our scores nor by con-
sidering the number of mapped genes, the best
absolute performing tool or class of tools was indi-
viduated. All these bioinformatics instruments show
strengths and limitations that can be overcome by
their integrated use. By our experience, the com-
bined use of WebGestalt-KEGG enrichment analy-
sis and Pathway-Express, together with Coremine
and Onto-Express plus WebGestalt-GO enrichment
analysis, in a step-by-step workflow, guarantees
the best results. To demonstrate the validity of our
theory we applied this workflow of analysis to the
D7 dataset, which refers to a microarray experiment
performed in our lab (Iofrida et al., 2012). Fig. 8
shows the intersection among the genes from this
dataset mapped by these tools.

WebGestalt-KEGG + Pathway-Express (71)

WebGestalt- 60 + Onto-Express (217)

Fig. 8. - Intersection among the mapped genes.

The intersection among the genes mapped by the best performing tools is shown. The D7 dataset has been used
to produce this comparison. WebGestalt-KEGG enrichment analysis and Pathway-Express results are represented
in the blue circle, Onfo-Express and WebGestalt-GO enrichment analysis results are in the red circle and Coremine

results are in the green circle.



BIOLOGICAL INTERPRETATION OF MICROARRAY DATA 91

The joint use of WebGestalt-KEGG and Pathway-
Express collected 71 mapped genes from D7
dataset. Fifty three out of these 71 were in com-
mon among all the used tools and may be used
as core genes for a further map of concepts with
Coremine, as well as the mechanisms suggested
by the pathway analysis tools may be considered
as preliminary biological entities. Seventy nine
genes out of those annotated by Coremine were
not mapped by the pathway analysis tools due to a
lack of knowledge in information sources. Seventy
seven of these genes, however, were recovered
by the GO tools and indicated Biological Process
categories that may be used as biological entities
by Coremine.

Similar results were obtained with the other datasets
suggesting that a joint use of these pathway and
gene network analysis tools is essential to get an as
comprehensive as possible biological interpretation
of microarray data.

Conclusions

The biological interpretation of microarray results
represents one of the most exciting challenges
both for biologists and bioinformaticians. Producing
knowledge from a list of genes in a fast and effective
manner is a common target for these research areas.
However, although the number of bioinformatics
solutions increases weekly, there is still not a tool
able to collect all the necessary information and
to completely replace human skills in interpreting
microarray results.

Pathway analysis tools are fundamental to gather
molecular information emerging from microarray
results. They are used to highlight the biochemi-
cal networks and to formulate hypotheses about
the underlying molecular mechanisms. However,
notwithstanding the continuous implementation of
new tools, only a small number of known genes,
shared by many pathways, is annotated in KEGG,
BioCarta and GenMAPP, thus limiting the obtained
information.

Extracting evidence from heterogeneous sources
reveals additional biological insights that are not
covered by mining only pathway and ontology data-
bases. This information is becoming fundamental
for the biological interpretation of microarray gene

expression data and will be essential to interpret data
obtained by the “Next Generation Sequencing” tech-
nologies (Cullum et al., 2011), like RNA-Seq (Costa
et al., 2010). However, the blind use of data mining
tools may be discouraging, as the quantity of infor-
mation can be overwhelming and misleading, as the
level of accuracy in not currently satisfying. For the
biological interpretation of data, users need more
friendly and accurate data mining tools to obtain
complete information on the increasing number of
topics uncovered by canonical pathway or ontology
databases. The active engagement of content provid-
ers in making full text papers available, as well as of
software developers in producing more effective and
user-oriented solutions, is mandatory to increase the
power of data mining tools.

In this regard, the BioCre AtIvE (Critical Assessment
of Information Extraction systems in Biology) orga-
nization has been founded to evaluate text mining
and information extraction systems applied to bio-
logical contexts. It also facilitates the development
of new tools sharing information by Web 2.0 tech-
nologies similar to Wiki or social networks, as well
as the building of additional sources like lexicons,
terminology standards and ontologies, and the cre-
ation of new standardized methods for paper writing
like automatically generated abstracts or summaries.
Last but not least, the BioCreAtIVE organization
focuses on the need of increasing quality and num-
ber of interactions between developers and users to
narrow the gap between bioinformatics solutions
and end-user requests.
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Supplementary data 1
Selecting the Tools for Biological Interpretation of Microarray Results
Mandatory criteria for tool selection

The tools were retrieved by querying PubMed and
the popular search engine Google with a series of
Boolean queries.

The following mandatory criteria were then adopted
to identify the most useful tools:

to be royalty-free;

to accept as input a list of DEGs;

to have a functional web-based application;

to require no programming skills to be used;

to be not specific to one organism (except for
Homo sapiens) or a single microarray platform;
The selected tools were further analyzed to exclude
“clone” tools, which are tools adopting the same
computational method and similar implementation
solutions.

AR EE Ol A

Items for tool evaluation

The selected tools were evaluated on the basis of the
following eight items: interface design and usability,
easiness of input submission, effectiveness of the
output presentation, usefulness of the downloaded
outputs, opportunity to submit multiple types of
input IDs, sources of information, availability of dif-
ferent statistics and multiple test correction methods.
All the items are described in Table II.
Each tool was tested from a technical point of view
by two bioinformaticians and by three biologists to
gather their opinions as end-users. For item 1)-4) a
questionnaire was drawn to detail the features evalu-
ated by the raters. Each feature, formulated as nega-
tive sentences, was evaluated by using a discrete
scale of four indices that quantify the rater’s agree-
ment to the feature. The index scale ranged from
1, meaning “I completely agree”, to 4, meaning I
completely disagree”. Kendall’s W, as implemented
in concord package by r-project, was adopted to
evaluate the inter-rater agreement for each tool and
for each item.
For each tool two Scores have been calculated:
— Score 1: the sum of evaluation indices (S,) of
items 1)-4);
— Score 2: the sum of suitably scaled (SS,) evalua-
tion indices (S,) of items 5)-8).
The Score 1 indicates how much a tool is compliant

to the end-user requirements. In order to calculate
the average raters’ agreement (S,); for a fixed item j,
all the indices (S,), of raters’ agreement were aver-
aged, where 1 = 1,...,5 identifies the rater. Then, a
tool totalizing an average index (S,); close to 4 can
be considered compliant to the end-user expecta-
tions, whereas if that score is close to 1 the tool
has to be considered insufficient by end-users. For
each tool the Score S, equals the sum of (S,); scores,
where j = 1,...,4 identifies the item.

The Score 2 summarizes how much information
is available to the user and how much it is used to
obtain the analysis results. In order to give the same
range of representation to both the scores, the S,
indices have been rescaled using the same range of
Score 1 indices.

To obtain SS,, the scaling factor (SF) was calcu-
lated by dividing the maximum index value of items
1)-4), that is 4, by the maximum index value col-
lected from all the tools for each item 5)-8).

SF and SS, are defined as follows:

SF = 4/max(S,),
(SS,); = SF*(S,);

where i = 1,...,10 identifies the tool.

For example, if the tool x counts 14 sources of infor-
mation and this is the maximum value from all the
10 tools, SF and (SS,), are 4/14 and 4, respectively.
A final score has been derived by summing the two
Scores.

As the items 1)-4) may be subjective, for each tool
ISI and Scopus citation indices were gathered. These
indices were used as an a posteriori validation of
our final ranking. The total number of citations was
divided by the number of years elapsed from the
paper publication to remove the citation bias. For
each tool basic information concerning tool web-site
and documentation was also collected.

The completeinformationisavailablein Supplementary
data 3.

Concerning the hands-on assessment of the tools by
a list of DEGs (details on the employed lists can be
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seen in Supplementary data 2), the performances of
each tool in mapping genes were compared and, to
make this final contrast as independent as possible
from different statistical solutions, no statistical test
or multiple test correction were used during the data
submission. In order to make the performance in
mapping genes independent by a specific case study,
the 11 datasets have been taken from microarray
experiments performed on different topics.
Onto-Translate (2) and MADGENE (3, 4) has been
used to translate each gene code into the correspond-
ing HUGO nomenclature before submitting the
DEGs lists to the tools, except for Pathway Miner
and KOBAS 2.0, for which GenBank Accession
number and NCBI Entrez ID were respectively used.
to eliminate any nomenclature bias...

Noftes

1 R-project. Available from: http://www.r-project.
org/.

2 Draghici S., Sellamuthu S., Khatri P. Babel’s tower
revisited: a universal resource for cross-referenc-

ing across annotation databases. Bioinformatics,
22 (23): 2934-2939, 2006.

3 MADGene. Available from: http://cardioserve.
nantes.inserm.fr/mad/madgene/.

4 Baron D., Bihouée A., Teusan R., Dubois E.,
Savagner F., Steenman M., et al. MADGene:
retrieval and processing of gene identifier lists for

the analysis of heterogeneous microarray datasets.
Bioinformatics, 27 (5): 725-726, 2011.

Supplementary data 2

Datasets submitted to the 10 tools.

Dataset | Organism Platform used URL # DEGs

D1 Homo sapiens | Affymetrix HG-U133A http://www.ncbi.nlm.nih.gov/pubmed/ 17894889 185

D2 Homo sapiens | llumina Sentrix BeadChip http://www.ncbi.nlm.nih.gov/pubmed/21176028 1074
(Human-6v2)

D3 Homo sapiens | Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/20406432 104

D4 Homo sapiens | GeneChip® HG-U133 Plus 2.0 | http://www.ncbi.nim.nih.gov/pubmed/18194544 2922
arrays

D5 Homo sapiens | Affymetrix HGU133A plus 2.0 http://www.ncbi.nlm.nih.gov/pubmed/19753302 386

D6 Homo sapiens | Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 173

D7 Homo sapiens | Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 201

D8 Homo sapiens | Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 313

D9 Homo sapiens | Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubbmed/ 17244347 58

D10 Homo sapiens | Affymetrix Human Genome http://www.ncbi.nlm.nih.gov/pubmed/ 19596987 758
U133 Plus 2.0

D11 Homo sapiens | Human Genome U133 Plus 2.0 | http://www.ncbi.nim.nih.gov/pubmed/18778695 1791
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