
Background

Oligonucleotide and cDNA microarrays are high-
throughput techniques that compare the mRNA 
expression of a large group of genes in different 
cells or experimental conditions. The final output of 
a microarray data analysis is a list of codes identify-
ing differentially expressed transcripts. Interactions 
among genes, however, are not adequately repre-
sented by a list of codes. Therefore, the following 
step of a microarray experiment is the biological 
interpretation of results to formulate hypotheses on 
the molecular mechanisms underlying the investi-
gated biological phenomenon.

To deal with this challenging task, users submit 
the complete list of differentially expressed genes 
(DEGs) to several bioinformatics tools that query 
specific databases of biological information. By 
these tools, the investigators usually expect to 
obtain: a) an exhaustive annotation of as many as 
possible DEGs, b) an effective visualization of the 
biological interactions among DEGs, c) some sug-
gestions on what are the most important groups of 
interacting DEGs and the biological processes in 
which they are involved. To date, a tool that meets 
all these requirements does not exist and users have 
to cope with many different tools in order to obtain 
all the needed information.
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The first attempt to schematize biochemical interac-
tions among genes, so-called “pathway”, was done 
by Goto and colleagues (Goto et al., 1997) who used 
binary relations between genes or gene products 
as components of the network. They drew the first 
metabolic pathway thus creating the KEGG database 
(Ogata et al., 1999). In KEGG, any new evidence on 
gene interactions is subjected to a careful verifica-
tion by curators.
A different approach was adopted by BioCarta  
founders in 2000. They developed one of the first 
examples of Web 2.0 technology, as information 
is submitted by users, who remain traceable, and 
is managed by the scientific community. BioCarta 
provides rules to govern user collaboration and guar-
antees two levels of information care. The first level 
is assigned to all contributors, who send feedbacks 
on the submitted pathways. The second level of 
information care is assured by “Gurus”, a restricted 
community of certified contributors, who evaluate 
the accuracy of the most popular pathways.
Similarly to BioCarta, GenMAPP (Dahlquist et al., 
2002; Salomonis et al., 2007) is a free stand-alone 
computer application working both as a database 
and software. GenMAPP organizes data in path-
ways, called MAPPs, and allows users to identify 
gene networks in their own microarray data. MAPPs 
are drawn based on textbooks, review papers and 
public databases like Ensembl.
Finally, lists of functionally related genes are also 
generated by the Gene Ontology Project (Gene 
Ontology Consortium, 2001). The Gene Ontology 
(GO) database derives from a joint effort of scien-
tific community that created a dynamic framework 
and a unified vocabulary to annotate genes by gene 
products. The three ontologies, Molecular Function, 
Biological Process and Cellular Component, allow 
scientists to univocally annotate genes in different 
biological contexts. Although the aim of GO is not 
building biological networks of interactions, finding 
a consistent group of DEGs mapped in the same 
Biological Process category suggests that they are 
involved in the same molecular mechanism. The GO 
information often completes the picture provided by 
KEGG, BioCarta and GenMAPP in terms of bio-
logical interpretation.
“Pathway analysis” strictly refers to the analysis that 
uses the information contained in pathway databases 
like KEGG, BioCarta and GenMAPP. When GO 

information is used, the performed analysis is called 
“Functional analysis”. Keeping in mind this distinc-
tion, hereafter the term “pathway analysis” will be 
used to indicate the analysis that exploits both path-
way and GO information, as already done by other 
authors (Khatri et al., 2012).
Pathway analysis can be performed by two enrich-
ment approaches (Dopazo, 2006; Huang et al., 
2009): the cut-off dependent and the cut-off free 
approaches, respectively adopted by the over-repre-
sentation (Khatri and Drăghici, 2005) and the func-
tional class scoring (Goeman et al., 2004; Pavlidis et 
al., 2004) methods of analysis.
Tools adopting the first approach are focused on 
DEGs lists. They associate a value of statistical 
significance to the over-representation of groups of 
DEGs in some pathways or GO categories by using 
statistical tests (Khatri and Drăghici, 2005). Tools 
adopting the second approach use the complete 
list of gene expression data to score selected gene 
sets from KEGG, GO or MSigDB, filtered by non-
specific methods and ranked by their differential 
expression values. They calculate the gene set and 
DEGs enrichment scores and associate a value of 
statistical significance to them by sample random-
ization methods and Kolmogorov-Smirnov test, 
respectively (Nam and Kim, 2008).
In both the approaches, the statistically significant 
pathways or categories or gene sets are assumed 
to be the most important for the biological inter-
pretation of microarray results. Universally valid 
statistical tests or multiple test correction methods 
do not exist and users have to choose them based 
on the experiment characteristics. For more details 
see (Dudoit et al., 2004; van der Laan et al.; 2004, 
Khatri and Drăghici, 2005; Khatri et al., 2012).
A completely different approach to build interac-
tion networks among biological entities is provided 
by mining heterogeneous sources of information 
using data mining techniques (Jelier et al., 2003; 
Hoffmann et al., 2005; Krallinger et al., 2008; Jelier 
et al., 2011). We refer to this kind of analysis as 
“gene network analysis”.
Data mining tools, through the analysis, extrac-
tion and visualization of information contained in 
free-text and/or heterogeneous sources, provide 
researchers with an integrated and effective view 
of the biological information emerging from the 
gene lists. MEDLINE  is the primary source of pub-
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lished papers. A list of identifiers like gene names, 
keywords, etc. must be supplied to perform text 
mining by MEDLINE. Data mining tools usually 
annotate the submitted information using a variable 
number of databases to find synonyms and make the 
search as exhaustive as possible. The list of identi-
fiers is then exploited by text mining tools to find 
documents and to tag in the text biological entities. 
Computational algorithms able to perform gram-
matical or morphological analyses are used to build 
interaction networks among entities. Databases of 
biological interactions, like MIPS (Mewes et al., 
2011), BIND (Bader et al., 2003), HPRD (Prasad et 
al., 2009), IntAct (Aranda et al., 2010) and databases 
of pathways and ontologies are used as benchmarks 
to validate the literature networks from a biological 
point of view. At the same time, this information can 
be used to annotate the networks and provide a wide 
selection of biological evidences.
Many tools have been implemented to make easier 
the biological interpretation of microarray results. 
A full review of all the tools or classes of meth-
ods is beyond the purpose of this paper, as many 
technical reviews on this topic already exist (see 
Nam and Kim, 2008; Werner, 2008; Abatangelo 
et al., 2009; Huang et al., 2009; Jelier et al.; 2011, 
Faro et al.; 2012, Hung et al.; 2012, Khatri et al., 
2012). However, up to date no author has examined 
these tools from the end-users point of view. Since 
a frequent issue in using these tools is the limited 
or incomprehensible accompanying documentation, 
this paper aims to provide to everyone dealing with 
the interpretation of microarray results a useful 
guide to make an appropriate choice among the 
available tools. Our purpose is also to illustrate to 
software developers strengths and weaknesses of 
tools pointed out by end-users, in order to connect 
users’ requests and developers’ strategies.
Ten freeware tools were selected, each compliant 
to five mandatory criteria (Table I). They represent 
different bioinformatics solutions to the biological 

interpretation of microarray data. Eight items (listed 
in Table II) were adopted to characterize and score 
each tool (see Supplementary data 1 for details on 
score calculation) and a hands-on evaluation using 
11 DEG lists from as many microarray studies was 
performed (see Supplementary data 2 for details on 
DEG lists). In order to make the tool evaluations 
independent from a specific case study, the 11 data-
sets were selected from microarray experiments on 
different topics. For the data mining tools, several 
biological entities (keywords, gene names, etc) rel-
evant to the experiments were chosen. Finally, we 
suggest a workflow to use the most effective tools 
among those selected.

Tools for the Biological Interpretation 
Task

Sixty tools were retrieved by screening 275 papers 
from PubMed and several links from Google. After 
removing tools adopting the same computational 
method or similar implementation solutions and 
those largely reviewed by other authors, 10 tools 
compliant with our mandatory criteria were selected: 
Pathway Miner (Pandey et al., 2004), WebGestalt-
KEGG enrichment analysis (Zhang et al., 2005), 
KOBAS 2.0 (Wu et al., 2006), Pathway-Express 
(Draghici et al., 2007), KegArray (Wheelock et 
al., 2009), Onto-Express (Khatri et al., 2002) and 
WebGestalt-GO enrichment analysis (Zhang et al., 
2005) for the pathway analysis, Coremine, FunDO 
(Osborne et al., 2009) and GNCPro (Liu et al., 2010) 
for the gene network analysis. A summary of Scores 
1 and 2 totalized by each tool is shown in Tables III 
and IV. The complete tool evaluation is available in 
Supplementary data 3.
In the last few years, many tools for pathway 
analysis implemented the cut-off free enrichment 
approach. The strength of cut-off free tools is that 
they preserve the complete network of dependen-

Table I. - Mandatory criteria for tool selection

1. To be royalty-free.

2. To accept as input a list of DEGs.

3. To have a functional web-based application.

4. To require no programming skills to be used.

5. To be not specific to one organism (except for Homo sapiens) or a single microarray platform.
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cies among genes by submitting the full list of 
genes assayed by a microarray. However, they use 
re-sampling methods to achieve the statistical sig-
nificance of gene-sets thus performing worse with 
very few samples. Concerning the experiments on 
the most studied organisms, Homo sapiens, Rattus 
norvegicus and Mus musculus, without taking into 
account the experimental design, the percentage of 
microarray studies in ArrayExpress realized with 

more than 20 samples are 40%, 37% and 25%, 
respectively. It follows that, for most of the avail-
able microarray experiments, the results provided by 
the cut-off free tools must be carefully interpreted. 
Moreover, microarray results obtained by complex 
experimental designs, like indirect comparisons or 
comparisons of more than two conditions, cannot be 
submitted to cut-off free tools due to their complex 
statistical framework.

Table II. - Description and index definition of adopted evaluation items.

Characteristic Description Score

1) Interface Design and Usability The ability of a tool to be intuitive or to allow 
users to learn to use it easily, that is how much 
the tool design is end-user oriented

Mean of users’ scores

2) Easiness of Input Submission Intuitiveness and flexibility in input data 
formatting and submitting

Mean of users’ scores

3) Output Representation 
Effectiveness

“[…] despite the vastness of an information 
structure, the view must be small, moving 
around must not take too many steps and the 
route to any target must be discoverable […]” 
(31)

Mean of users’ scores

4) Downloaded Output Usefulness Usefulness of the downloaded report Mean of users’ scores

5) Opportunity to submit Multiple 
input ID Types

The use of a gene code conversion tool is not 
pre-required, as multiple input IDs are allowed

Normalized Number of multiple ID

6) Sources of Information Databases from which the tool extracts 
information

Normalized Number of sources 
of information

7) Availability of different Statistic Many statistics are available to allow users to 
make a choice depending on the size of the 
gene reference background of the analysis (13)

Normalized Number of statistical 
distribution available

8) Availability of Multiple Test 
Methods

Many methods are supplied to contain Type I 
error rate in assessing the statistical significance

Normalized Number of multiple 
test correction methods

Table III. - Summary of scores totalized by each tool using evaluation items 1)-4).
The values of Kendall’s W (K’s W), showed in round brackets for each item, were all significant and evidenced a good 
concordance among raters.

Tool Name

Interface 
Design and 

Usability
(K’s W: 0.65)

Easiness 
of Input 

Submission
(K’s W: 0.74)

Output 
Representation 

Effectiveness
(K’s W: 0.55)

Downloaded 
Output Usefulness

(K’s W: 0.58)
Score 1
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ls WebGestalt-KEGG 3.5 3.75 3.75 3.5 14.5

Pathway-Express 3.5 2.75 3.75 2 12

Pathway Miner 3 3 2.75 3 11.75

KOBAS 2.0 2 2.75 2 1 7.75

KegArray 1.5 1.5 2.5 2 7.5

WebGestalt-GO 3.5 3.75 3.75 3.5 14.5

Onto-Express 3.25 3 3.5 3 12.75
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GNCPro 3.5 2 3 2.75 11

Coremine 2.25 2.75 2.75 3 10.75

FunDO 3.75 4 2 1 10.75
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Cut-off dependent tools accept lists of DEGs as 
input and assume that there is no dependency among 
genes. This kind of approach could increase the 
number of false positive results. On the other hand, 
these tools manage all the microarray experimental 
designs and with small datasets produce more reli-
able results than cut-off free tools (see Goeman and 
Bühlmann, 2007; Rivals et al., 2007; Nam and Kim, 
2008; Huang et al., 2009; Gatti et al., 2010).
We focused on web-based application tools since 
tool installation represents the first problematic step 
for many users. They are, indeed, discouraged when 
files, libraries or databases must be locally installed 
and manually connected or updated. The downside 
is that the usage of web-based application tools 
depends on the tool server maintenance downtime.

Pathway analysis tools
Pathway Miner

Pathway Miner is one of the first attempts at min-
ing gene co-regulation networks. Annotation data 
available in Pathway Miner are updated from NCBI 
dbEST, Unigene  and Entrez Gene.
Pathway Miner supplies a plain interface for micro-
array data or keyword submission. It accepts only 
the GenBank Accession Number code as input ID, 
the most used IDs by microarray suppliers.
It provides a clear results summary page reporting 
the number of mapped genes and pathways for each 
source of information. Detailed results are obtained 
browsing the pathway images, where mapped genes 
are highlighted. This visualization is effective to 

individuate groups of interacting DEGs and the 
automatically locally savable images provide a suit-
able analysis report.
For each source of information the downloaded 
report contains the GeneSymbol list and accession 
numbers of mapped genes. In addition, the complete 
web page is locally savable by the browser saving 
options, including all the hyperlinks to external 
databases.
The distinguishing strength of this tool is that it sup-
plies pathway information from KEGG, BioCarta 
and GenMAPP, which are the databases to date 
available that contain information on biological 
pathways. However, no multiple test correction 
methods are provided, thus a priori hypotheses on 
pathways or functional categories are needed.

KOBAS 2.0

KOBAS 2.0 uses KEGG ORTHOLOGY as con-
trolled vocabulary for gene annotation. It takes as 
input a list of gene codes or sequences in FASTA 
format that annotates using several databases. The 
chance to submit FASTA sequences is unique and 
represents the strength of KOBAS 2.0, concerning 
microarray studies on poorly annotated organisms.
KOBAS 2.0 results are obtained by the annotation 
and the identification steps. Although the interface 
is not fully intuitive and the annotation step does 
not accept gene IDs frequently used by microarray 
suppliers, the available heterogeneous sources of 
information provide an exhaustive annotation of the 
submitted gene list. The identification step provides 

Table IV - Summary of scaled scores totalized by each tool using evaluation items 5)-8).
For each class, tools are ranked on descending Score 2. See Supplementary data 3 for detailed information.

Tool Name ID Types Sources of 
Information Statistics

Multiple test 
correction 
methods

Score 2
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ls WebGestalt-KEGG 4 3.5 0.8 4 12.3

KOBAS 2.0 1.33 3 4 2.4 10.73

Pathway-Express 3.73 0.25 2.4 3.2 9.58

KegArray 1.6 0.25 0 0 1.85

Pathway Miner 0.26 0.75 0.8 0 1.81

WebGestalt-GO 4 0.25 0.8 4 9.05

Onto-Express 1.86 0.25 1.6 3.2 6.91
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Coremine 1.06 4 0.8 0 5.86

FunDO 0.53 0.25 0.8 0.8 2.38

GNCPro 1.06 0.5 0 0 1.56
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the statistically enriched pathways by using as input 
the annotation step output. The available statistical 
test set is really complete. However, although the 
provided list of enriched pathways and biochemical 
interaction networks is exhaustive, no map repre-
senting the mapped genes is included. Moreover, all 
the hyperlinks to databases are removed from the 
locally saved tables and the user needs to rerun the 
analysis every time.

KegArray

KegArray was selected although it is a stand-alone 
Java application as it has been developed by KEGG 
developer team. This tool is designed for integrated 
analysis of KEGG EXPRESSION data. It also 
maps microarray results in KEGG pathways but 
only using KEGG EXPRESSION data as template. 
Details on the usage of its not fully intuitive inter-
face are provided in the help documentation.
KegArray appears the most effective tool in map-
ping genes (see Table V), a characteristic really 
appreciated by users dealing with the biological 
interpretation task. As evidenced in (Drăghici et al., 
2006), this ability is due to several elements includ-
ing the pathway update frequency and the type of 
ID used to query the pathway database. KegArray 
accepts only KEGG GENE IDs that are not usual but 
that proved to be very effective for gene expression 
data, based on the performance evidenced in this 
paper. They are obtained by the KegArray ID con-
version tool, using IDs from NCBI GI, Entrez Gene, 
UniGene, UniProt and IPI databases. We were not 

able to obtain the conversion of GenBank codes, 
which are among the most used gene ID.
The KegArray result is a list of pathways where 
groups of DEGs are mapped. Each pathway name 
is linked to the KEGG pathway image with the 
mapped genes highlighted. The output cannot be 
saved in file format. However, as no statistical test 
is provided, it should only be used in an exploratory 
manner since it does not give any suggestion on 
which are the most significant pathways.

Pathway-Express

Pathway-Express, one of the most advanced path-
way analysis tools, associates to the pathways a 
statistic called “Impact Factor”, based on a sys-
tem biology approach. This approach schematizes 
pathways like networks and considers the different 
molecular effect of diverse interactions/reactions 
between genes and/or gene products, i.e. activation, 
ubiquitination, glycosylation, etc.
The calculated Impact Factor derives from:
a)	 the number of DEGs in the pathway compared to 

the total number of genes in it;
b)	 the extent of the displacement from the pathway 

signaling steady state;
c)	 the location of the mapped DEGs within the path-

way topology.
a) determines how much the mapped genes are rep-
resentative of the whole pathway; b) estimates the 
level of network perturbation due to gene expres-
sion changes and to the different molecular effects 
produced by diverse gene-gene interactions/reac-

Table V. - Normalized citation indices, percentage of mapped genes and Total Score.
For each class, tools are ranked on descending Total Score.

Tool Name Normalized ISI 
Citation Index

Normalized 
Scopus Citation 

Index

Mapped genes 
(average %) Total Score

Pa
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ls WebGestalt-KEGG 35.16 30.66 30.27 26.8

Pathway-Express 37.25 30.75 21.98 21.58

KOBAS 2.0 10.6 9.4 NA 18.44

Pathway Miner 7.71 6.57 28.79 13.56

KegArray 4.8 2.8 37.76 9.35

Web-Gestalt-GO 35.16 30.66 66.48 23.55

Onto-Express 27.88 25.44 85.68 19.66
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Coremine NA NA 61.4 16.61

FunDO 5.5 6 31.43 13.13

GNCPro NA NA 49.88 12.56
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tions; c) considers that expression changes of genes 
upstream located in the pathway topology affect 
the pathway more than those of genes downstream 
located. To date, the Impact Analysis is the only 
technique that puts together statistical and biological 
features to provide an index of pathway perturbation 
due to gene expression changes.
Therefore, even if Pathway-Express implements 
a cut-off dependent approach, it considers depen-
dencies among DEGs and for this reason it is 
more appropriately numbered among the Pathway 
Topology-based tools (Khatri et al., 2012).
The data submission interface of Pathway-Express is 
intuitive. Information about file format and ID types 
is available via a FAQ link. The list of genes assayed 
on custom or commercial arrays can be selected 
in the drop-down menu and used as reference for 
over-representation analysis. Many KEGG signaling 

pathways are exploited by this tool, whereas meta-
bolic pathways are not considered. While the basic 
information submission does not require any par-
ticular expertise, setting advanced options is more 
complicated and not explained at all.
Many statistical distributions and multiple test cor-
rection methods are available.
The output consists of two windows. Four sub-
windows form the first one and contain the pathway 
analysis results (Fig. 1), while the second one shows 
the retrieved pathways, in which the mapped DEGs 
are highlighted (Fig. 2). The sub-windows can be 
saved separately, but all the reciprocal links are lost. 
The pathway images can be locally saved in image 
format only one by one and losing the essential 
hyperlinks to KEGG. A saving option of the analysis 
as a project might be useful in order to not rerun the 
analysis every time.

Fig. 1. - Output of Pathway-Express.
The four reciprocally linked sub-windows produced by Pathway-Express after the submission of dataset D8 are 
shown.
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Onto-Express

Onto-Express helps users to mine the available func-
tional annotation data and find relevant functional cat-
egories. For each functional category, represented by 
a node in the trees schematizing the three ontologies, 
this tool calculates two different p-values. The first 

one is the collapsed p-value, calculated on the number 
of mapped genes, compared to those totally involved 
both in the considered node and its child nodes. The 
second one is the expanded p-value, calculated on the 
number of genes mapped, compared to those totally 
involved only in the considered node. This double 

Fig. 2. - A pathway map by Pathway-Express.
The map highlights the differentially expressed genes. Down-regulated genes are in blue and up-regulated genes 
in red.
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statistical evaluation is the Onto-Express strength and 
allows users to decide the level of depth of their analy-
sis. The interface design, file format, ID types and sta-
tistical options are similar to that of Pathway-Express. 
The full GO database or user selected ontologies can 
be set as reference for the analysis.
A full set of views is provided by Onto-Express to 
support users in result visualization and interpretation. 
Among the most informative there are the Tree View, 
the Flat View and the Single Gene View (Fig. 3).
For the Biological Process ontology, two locally 
savable analysis reports are available. The first one 
shows the tree structure and for each functional cat-
egory lists the p-values and the number of mapped 
genes but not their names (IDs). The second one 
contains the same information plus the mapped 
genes for each functional category, but loses the tree 
structure. As both nesting levels and mapped genes 
are fundamental for the biological interpretation of 
DEGs, an integrated report would be more useful 
from an end-user point of view, especially if a large 
number of functional categories is statistically sig-
nificant and user needs to frequently jump between 
the two reports to integrate the information.

WebGestalt

WebGestalt V2 is an intuitive tool that provides an 
easy way for researchers to have an integrated over-
view on large sets of genes. It consists of four mod-
ules: gene set management, information retrieval, 
organization/visualization and statistics.

The gene set management module allows the user to 
easily upload lists of many different gene IDs and 
to manage them making the data formatting process 
simple. The information retrieval system retrieves 
annotations from up to 20 sources by the local data-
base GeneKeyDB (Kirov et al., 2005). By exploiting 
the organization/visualization module, the annotated 
list can be subjected to several kinds of analysis, 
including Gene Ontology, tissue expression pattern, 
chromosome distribution, metabolic and signaling 
pathways and protein domain.
GO enrichment analysis performs the over-repre-
sentation analysis of DEGs in GO categories and 
produces three directed acyclic graphs (Fig. 4). Each 
enriched category is linked to the list of mapped 
genes. This view is effective in helping users to 
retrieve at a glance the core information to be used 
for biological interpretation of the data. Details on 
the enriched categories and mapped genes are col-
lected in a locally savable table.
Similarly, KEGG enrichment analysis performs the 
over-representation analysis of DEGs in KEGG path-
ways. For each statistically relevant pathway an 
exhaustive annotation of the mapped genes and a use-
ful pathway visualization with the highlighted genes 
are reported. All these tables can be locally saved.
For both analyses the complete web pages can be 
saved, thus obtaining an effective report hyperlinked 
to all the available data sources.
Hypergeometric distribution and Fisher’s exact test 
are supplied and users can select different signifi-

Fig. 3. - Tree View, Flat View of Biological Process ontology and Single Gene View of SMAD3 gene by Onto-Express.
The Tree View displays the results in a tree diagram where the three principal branches represent the ontologies 
from GO Consortium. Each node can be expanded to find statistically significant terms and the mapped genes. 
The Flat View visualizes for a selected ontology the p-values and the percentage of DEGs by a bar graph. The Single 
Gene View shows GO terms where a selected gene has been found.
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cance levels for the statistical analysis and specify 
how many genes a category has to contain to be 
highlighted as statistically significant in the directed 
acyclic graphs.
Several multiple test correction methods are pro-
vided.

Gene Network Analysis Tools
FunDO

FunDO adopts text mining techniques to associ-
ate a list of DEGs with diseases from the Disease 
Ontology (DO) database. The association is per-
formed by using the NCBI GeneRIF database 
(Mitchell et al., 2003) information, thus a greater 
number of gene-disease associations are available 
than that given by OMIM. This tool is mostly effec-
tive when the a priori hypotheses of the experiment 
concern a disease. Nevertheless, in the absence of 
any a priori hypothesis, the associations between 
genes and diseases suggest molecular mechanisms 
to further investigate by pathway analysis or other 
gene network analysis tools.
FunDO interface is plain and the list of human 
Entrez or GeneSymbol IDs is directly pasted in the 
text box input field. The output is a locally savable 
Java window consisting of two parts: a network, 

where the top five DO terms and the submitted genes 
associated to them are represented, and a table that 
summarizes the association results. The result view 
supplied by FunDO highlights what are the most 
represented DO terms in the submitted DEG list 
(Fig. 5). However, the edges are not linked to any 
URL providing the association by GeneRIF. The 
complete list of genes collected by GeneRIF and the 
subset of associated genes are shown in the table. 
The GeneSymbol codes are linked to their Entrez 
IDs. The over-representation of groups of submitted 
genes for each DO Term is evaluated by Fisher’s 
exact test and corrected by Bonferroni method.

GNCPro

GNCPro is a free data integration and visualization 
tool, developed and maintained by SABiosciences 
(SABiosciences, Frederick, MD, USA). This tool 
creates networks of heterogeneous information built 
based on binary relationships between human genes. 
The considered relationships concern but are not 
limited to functional and transcriptional regulation, 
co-expressions, chemical modifications, physical 
interactions, interactions reported by literature. The 
results visualization is very effective in helping user 
to formulate biological hypotheses due to the eas-

Fig. 4. - Directed Acyclic Graphs by WebGestalt-GO enrichment analysis.
The Directed Acyclic Graphs provided by WebGestalt-GO enrichment analysis after the submission of dataset D8. 
The statistically significant categories are highlighted in red.
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ily retrievable information on groups of interacting 
genes, the types of relationships involved and the 
documentation confirming the association (Fig. 6).
GNCPro builds networks based on three types 
of techniques: text mining, data mining and data 
acquisition. Text mining splits PubMed abstracts 
into sentences and then into single words. A curated 
vocabulary of human genes is used to retrieve bio-
logical entities and a dictionary of words concerning 
interactions allows the identification of different 
kinds of relationships. An extensive manual check-
ing of text mining results has been performed by 
the GNCPro team. Data mining and acquisition 
mine heterogeneous sources of information to build 
additional relationships among the submitted genes. 
Protein-protein interaction data from HPRD  and 
ProLinks  as well as microarray gene expression 
data from GEO  are acquired to build interactions 
and annotate the network. Genes co-expression 
data are mined from GEMMA  and from papers on 

microarray experiments. Predicted relationships are 
extracted by prediction algorithms, based on the 
evolution theory (Marcotte et al., 1999; Pellegrini 
et al., 1999).
GNCPro also suggests to the user new genes con-
nected to those submitted (Fig. 6), which helps to 
bridge gaps among submitted genes and to formu-
late new hypotheses. Moreover, GNCPro makes 
available other biochemical networks, i.e. KEGG, 
Reactome, NCI and SABiosciences PCR array path-
ways, to provide further information on the submit-
ted genes.
A set of utilities is supplied to carefully investigate 
each gene. Gene Network Central builds interac-
tion networks starting from a single submitted gene. 
Gene Name Translator translates a gene ID in sever-
al gene codes. Gene ID Explorer summarizes NCBI 
Gene information. Tissue Expression Viewer pro-
vides the level of gene expression in several tissues.
GNCPro interface is simple and allows users to 

Fig. 5. - Gene-disease network by FunDO.
The diameters of the red spots representing DO terms suggest which are the most represented diseases, as they 
are proportional to the number of genes associated. Text mining analysis from FunDo shows that the submitted 
dataset D7 is primarily related to breast cancer.
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paste a list of codes into the text box input field. 
Up to 125 human gene codes can be submitted 
simultaneously, while no keyword is accepted in 
addition to the DEGs list. Although the network 
can be easily managed to draw a comprehensible 
view, the only possibility to exclude genes from 
visualization is to uncheck them one by one by the 

advanced options. Different kinds of information 
are exportable from the network: the annotated 
lists of submitted genes and interactions are the 
most useful. Finally, no statistical test is supplied 
to measure the strength of the interactions, thus 
making GNCPro a useful tool to essentially gather 
heterogeneous information.

Fig. 6. - Gene network by GNCPro.
The graphical representation of each relationship is an oriented colored edge located between two blue nodes 
that represent known submitted genes. Unknown submitted genes are indicated by red squares. Genes added by 
GNCPro are represented in the network as gray diamonds.
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Coremine

To date, no paper concerning Coremine has been 
published but some supporting documentation is 
available in the help page. Coremine derives from 
PubGene (Jenssen et al., 2001), which represents 
the first attempt to create a human gene-to-gene 
co-citation network by mining PubMed titles and 
abstracts. It annotates each gene by the MeSH 
(Medical Subject Heading) indices and the GO 
database. Assuming that a biological relationship 
between two genes co-mentioned exists, PubGene 
builds a curated literature co-occurrence network, 
where nodes represent the genes and edges the 
mined information.
The first important improvement of Coremine com-
pared to PubGene is the number of sources and of 
biological entities that can be submitted. Coremine, 
indeed, uses 16 different sources of information to 
build a “map of concepts” among the biological 
entities derived from 13 different categories. Due to 
its ability to find and connect an impressive amount 
of information, Coremine is considered a full bio-
medical search engine able to perform an integrative 
analysis among heterogeneous biological entities.
Around 300 GeneSymbol IDs can be uploaded 
with an unlimited number of keywords from the 
available biological categories. When a DEG list is 
submitted, Coremine works either in a supervised 
or an unsupervised way to individuate issues for 
data interpretation. When one or more keywords are 
submitted together with a list of genes, Coremine 
links together genes, keywords and biological enti-
ties from categories chosen by the user. If no a priori 
assumptions are formulated and no other categories 
are selected, Coremine works in an unsupervised 
manner building the map of concepts among the 
genes. If no genes but only keywords are submitted, 
Coremine produces a map of concepts among them, 
the most co-mentioned genes and/or other biological 
entities from the selected categories.
Many tools are available. The Library tool allows 
user to build a map of concepts among the submitted 
biological entities by mining either all MEDLINE 
publications or a group of papers selected by the 
user. The Genomic HyperBrowser (Sandve et al., 
2010) tool connects Coremine to Galaxy (Giardine 
et al., 2005), an open web-based research and analy-
sis platform for biomedical data that allows users to 
perform an integrated analysis of biomedical data. 

It also provides lists of genes associated to the bio-
logical entities submitted by users. For each gene a 
p-value is calculated based on the binomial distri-
bution and representing the gene-entity association 
strength. The File upload tool manages the submis-
sion of a DEG list to Coremine.
At a first glance, the Coremine interface may con-
fuse users, as, to make a submission, many options 
seem necessary to select. However, for a simple 
search, is sufficient to type just a GeneSymbol or 
a part of a gene name or a keyword in the text box 
input field. Coremine helps users in the submission 
suggesting alternatives from the 13 available bio-
logical categories in the drop-down menu. However, 
if a quite targeted search is desired, it is advisable to 
uncheck the categories considered uninteresting for 
the study.
The Coremine output consists of two views: the 
network view and the grid view. In the network 
view, the submitted biological entities are repre-
sented by nodes and the gathered information by 
edges. By clicking on a specific node, the so-called 
Facts, short information from the NCBI databases 
are shown. To retrieve information underlining a 
connection between two nodes, the so-called Hits, 
all links to the 16 sources of information are shown. 
The network view is an effective graphical solu-
tion but it becomes difficult to manage when many 
biological entities are submitted. This limitation can 
be overcome by exploiting a priori information or 
hypotheses, i.e. suggested by the pathway analysis. 
The grid view is useful to summarize information 
from a crowded network. It divides into two tables 
showing the linked entities and the connections. As 
in the network view, each element is linked to Facts 
and Hits (Fig. 7).
Although the views are not automatically savable, 
the map of concepts can be saved as a project in 
the user’s personal page, then can be reloaded and 
modified every time Coremine is accessed.

Performances in DEG mapping

The usefulness of a bioinformatics tool to formu-
late biological hypotheses depends on the body of 
retrieved information that, in turn, depends on the 
number of genes that the tool is able to annotate 
and map in networks of interactions. The number of 
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mapped DEGs depends on: a) the number and kind 
of queried sources of information; b) their updat-
ing frequency; c) the methods to query the sources; 
d) the native ID type used by the tool to query the 
source of information. The average percentage of 
DEGs mapped by each of the investigated tool, for 
the 10 tested datasets, is reported in Table V.
The adoption of multiple tools for the analysis guar-
antees the fullest possible coverage of all the avail-
able information. For further details see (Drăghici et 
al., 2006).

What tool/tools to use?

Based on the scores (Tables III, IV and V), 
WebGestalt-KEGG enrichment analysis appeared to 
be the most effective pathway analysis tool, followed 
by Pathway-Express. However, only their joint uti-
lization mapped in KEGG the 37% of DEGs on 
average. The addition of Pathway Miner mapped the 

47% of DEGs on average. This extra 10% is because 
Pathway Miner queries BioCarta and GeneMAPP 
databases in addition to KEGG. However, although 
Pathway Miner totalized a high Score 1, that means 
a positive feedback by users, its inadequate Score 2 
(see Table IV) highlights some technical limitations 
that should be taken into account.
KegArray showed good performance in mapping 
genes (38% on average), but totalized the lowest 
scores (see Tables III, IV and V). It should be used 
only as an exploratory tool, as no statistical tests 
are run and no suggestions on the most significant 
pathways are provided.
KOBAS 2.0 is the only tool that accepts sequences in 
FASTA format as input and identifies unknown genes 
from poorly studied genomes using BLAST algo-
rithm. It appears a good performing tool if we consider 
its Total Score, but its high ranking is only due to 
Score 2 (see Table IV). Its low Score 1 suggests that 
KOBAS 2.0 does not address the end-user require-
ments, especially in terms of output effectiveness.

Fig. 7. - Grid view of Coremine output.
A summary of the interactions among biological entities is supplied.
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Onto-Express and WebGestalt-GO enrichment anal-
ysis performed in a comparable way (Tables III and 
IV), retrieving Biological Process GO terms for, 
respectively, 86% and 66% of DEGs on average. 
This difference is probably due to the different used 
GO databases (GO or GO slim see Supplementary 
data 3). In general, the GO tool better performances 
compared to the pathway analysis tools in mapping 
genes are due to the larger number of genes anno-
tated in GO database.
No relevant difference among the tools for gene 
network analysis emerged considering their Score 1. 
However, the Score 2 indicated that Coremine out-
performed FunDO and GNCPro in terms of avail-
ability of information sources (Table IV). Moreover, 
Coremine linked the 61% of DEGs on average to the 
submitted keywords. The statistical methods adopted 
by the gene network analysis tools, however, should 
be improved as appears from Table IV. To date, a 
framework for proper statistical evaluation of the 
associations between genes and literature concepts is 
still lacking, although some promising methods have 
been recently proposed (Jelier et al., 2011).

The normalized citation indices shown in Table V, 
utilized as a posteriori validation of our evaluation 
process, evidenced a gap similar to that identified by 
Score 1 and 2 between the best and the worst per-
forming tools. Moreover, all these indices highlight-
ed that generally the gene network analysis tools are 
less frequently used than the pathway analysis tools.
Neither on the basis of our scores nor by con-
sidering the number of mapped genes, the best 
absolute performing tool or class of tools was indi-
viduated. All these bioinformatics instruments show 
strengths and limitations that can be overcome by 
their integrated use. By our experience, the com-
bined use of WebGestalt-KEGG enrichment analy-
sis and Pathway-Express, together with Coremine 
and Onto-Express plus WebGestalt-GO enrichment 
analysis, in a step-by-step workflow, guarantees 
the best results. To demonstrate the validity of our 
theory we applied this workflow of analysis to the 
D7 dataset, which refers to a microarray experiment 
performed in our lab (Iofrida et al., 2012). Fig. 8 
shows the intersection among the genes from this 
dataset mapped by these tools.

Fig. 8. - Intersection among the mapped genes.
The intersection among the genes mapped by the best performing tools is shown. The D7 dataset has been used 
to produce this comparison. WebGestalt-KEGG enrichment analysis and Pathway-Express results are represented 
in the blue circle, Onto-Express and WebGestalt-GO enrichment analysis results are in the red circle and Coremine 
results are in the green circle.
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The joint use of WebGestalt-KEGG and Pathway-
Express collected 71 mapped genes from D7 
dataset. Fifty three out of these 71 were in com-
mon among all the used tools and may be used 
as core genes for a further map of concepts with 
Coremine, as well as the mechanisms suggested 
by the pathway analysis tools may be considered 
as preliminary biological entities. Seventy nine 
genes out of those annotated by Coremine were 
not mapped by the pathway analysis tools due to a 
lack of knowledge in information sources. Seventy 
seven of these genes, however, were recovered 
by the GO tools and indicated Biological Process 
categories that may be used as biological entities 
by Coremine.
Similar results were obtained with the other datasets 
suggesting that a joint use of these pathway and 
gene network analysis tools is essential to get an as 
comprehensive as possible biological interpretation 
of microarray data.

Conclusions

The biological interpretation of microarray results 
represents one of the most exciting challenges 
both for biologists and bioinformaticians. Producing 
knowledge from a list of genes in a fast and effective 
manner is a common target for these research areas. 
However, although the number of bioinformatics 
solutions increases weekly, there is still not a tool 
able to collect all the necessary information and 
to completely replace human skills in interpreting 
microarray results.
Pathway analysis tools are fundamental to gather 
molecular information emerging from microarray 
results. They are used to highlight the biochemi-
cal networks and to formulate hypotheses about 
the underlying molecular mechanisms. However, 
notwithstanding the continuous implementation of 
new tools, only a small number of known genes, 
shared by many pathways, is annotated in KEGG, 
BioCarta and GenMAPP, thus limiting the obtained 
information.
Extracting evidence from heterogeneous sources 
reveals additional biological insights that are not 
covered by mining only pathway and ontology data-
bases. This information is becoming fundamental 
for the biological interpretation of microarray gene 

expression data and will be essential to interpret data 
obtained by the “Next Generation Sequencing” tech-
nologies (Cullum et al., 2011), like RNA-Seq (Costa 
et al., 2010). However, the blind use of data mining 
tools may be discouraging, as the quantity of infor-
mation can be overwhelming and misleading, as the 
level of accuracy in not currently satisfying. For the 
biological interpretation of data, users need more 
friendly and accurate data mining tools to obtain 
complete information on the increasing number of 
topics uncovered by canonical pathway or ontology 
databases. The active engagement of content provid-
ers in making full text papers available, as well as of 
software developers in producing more effective and 
user-oriented solutions, is mandatory to increase the 
power of data mining tools.
In this regard, the BioCreAtIvE (Critical Assessment 
of Information Extraction systems in Biology) orga-
nization  has been founded to evaluate text mining 
and information extraction systems applied to bio-
logical contexts. It also facilitates the development 
of new tools sharing information by Web 2.0 tech-
nologies similar to Wiki or social networks, as well 
as the building of additional sources like lexicons, 
terminology standards and ontologies, and the cre-
ation of new standardized methods for paper writing 
like automatically generated abstracts or summaries. 
Last but not least, the BioCreAtIvE organization 
focuses on the need of increasing quality and num-
ber of interactions between developers and users to 
narrow the gap between bioinformatics solutions 
and end-user requests.
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The tools were retrieved by querying PubMed and 
the popular search engine Google with a series of 
Boolean queries.
The following mandatory criteria were then adopted 
to identify the most useful tools:
1.	 to be royalty-free;
2.	 to accept as input a list of DEGs;
3.	 to have a functional web-based application;
4.	 to require no programming skills to be used;
5.	 to be not specific to one organism (except for 

Homo sapiens) or a single microarray platform;
The selected tools were further analyzed to exclude 
“clone” tools, which are tools adopting the same 
computational method and similar implementation 
solutions.

Items for tool evaluation
The selected tools were evaluated on the basis of the 
following eight items: interface design and usability, 
easiness of input submission, effectiveness of the 
output presentation, usefulness of the downloaded 
outputs, opportunity to submit multiple types of 
input IDs, sources of information, availability of dif-
ferent statistics and multiple test correction methods. 
All the items are described in Table II.
Each tool was tested from a technical point of view 
by two bioinformaticians and by three biologists to 
gather their opinions as end-users. For item 1)-4) a 
questionnaire was drawn to detail the features evalu-
ated by the raters. Each feature, formulated as nega-
tive sentences, was evaluated by using a discrete 
scale of four indices that quantify the rater’s agree-
ment to the feature. The index scale ranged from 
1, meaning “I completely agree”, to 4, meaning “I 
completely disagree”. Kendall’s W, as implemented 
in concord package by r-project, was adopted to 
evaluate the inter-rater agreement for each tool and 
for each item.
For each tool two Scores have been calculated:
–	S core 1: the sum of evaluation indices (S1) of 

items 1)-4);
–	S core 2: the sum of suitably scaled (SS2) evalua-

tion indices (S2) of items 5)-8).
The Score 1 indicates how much a tool is compliant 

to the end-user requirements. In order to calculate 
the average raters’ agreement (S1)j for a fixed item j, 
all the indices (S1)i of raters’ agreement were aver-
aged, where i = 1,…,5 identifies the rater. Then, a 
tool totalizing an average index (S1)j close to 4 can 
be considered compliant to the end-user expecta-
tions, whereas if that score is close to 1 the tool 
has to be considered insufficient by end-users. For 
each tool the Score S1 equals the sum of (S1)j scores, 
where j = 1,…,4 identifies the item.
The Score 2 summarizes how much information 
is available to the user and how much it is used to 
obtain the analysis results. In order to give the same 
range of representation to both the scores, the S2 
indices have been rescaled using the same range of 
Score 1 indices.
To obtain SS2, the scaling factor (SF) was calcu-
lated by dividing the maximum index value of items 
1)-4), that is 4, by the maximum index value col-
lected from all the tools for each item 5)-8).
SF and SS2 are defined as follows:

SF = 4/max(S2)i

(SS2)i = SF * (S2)i

where i = 1,…,10 identifies the tool.
For example, if the tool x counts 14 sources of infor-
mation and this is the maximum value from all the 
10 tools, SF and (SS2)x are 4/14 and 4, respectively. 
A final score has been derived by summing the two 
Scores.
As the items 1)-4) may be subjective, for each tool 
ISI and Scopus citation indices were gathered. These 
indices were used as an a posteriori validation of 
our final ranking. The total number of citations was 
divided by the number of years elapsed from the 
paper publication to remove the citation bias. For 
each tool basic information concerning tool web-site 
and documentation was also collected.
The complete information is available in Supplementary 
data 3.

Concerning the hands-on assessment of the tools by 
a list of DEGs (details on the employed lists can be 

Supplementary data 1
Selecting the Tools for Biological Interpretation of Microarray Results

Mandatory criteria for tool selection
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seen in Supplementary data 2), the performances of 
each tool in mapping genes were compared and, to 
make this final contrast as independent as possible 
from different statistical solutions, no statistical test 
or multiple test correction were used during the data 
submission. In order to make the performance in 
mapping genes independent by a specific case study, 
the 11 datasets have been taken from microarray 
experiments performed on different topics.
Onto-Translate (2) and MADGENE (3, 4) has been 
used to translate each gene code into the correspond-
ing HUGO nomenclature before submitting the 
DEGs lists to the tools, except for Pathway Miner 
and KOBAS 2.0, for which GenBank Accession 
number and NCBI Entrez ID were respectively used. 
to eliminate any nomenclature bias…

Notes
1	 R-project. Available from: http://www.r-project.

org/.

2	 Drăghici S., Sellamuthu S., Khatri P. Babel’s tower 
revisited: a universal resource for cross-referenc-
ing across annotation databases. Bioinformatics, 
22 (23): 2934-2939, 2006.

3	 MADGene. Available from: http://cardioserve.
nantes.inserm.fr/mad/madgene/.

4	B aron D., Bihouée A., Teusan R., Dubois E., 
Savagner F., Steenman M., et al. MADGene: 
retrieval and processing of gene identifier lists for 
the analysis of heterogeneous microarray datasets. 
Bioinformatics, 27 (5): 725-726, 2011.

Datasets submitted to the 10 tools.

Dataset Organism Platform used URL # DEGs

D1 Homo sapiens Affymetrix HG-U133A http://www.ncbi.nlm.nih.gov/pubmed/17894889 185

D2 Homo sapiens Illumina Sentrix BeadChip 
(Human-6v2)

http://www.ncbi.nlm.nih.gov/pubmed/21176028 1074

D3 Homo sapiens Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/20406432 104

D4 Homo sapiens GeneChip® HG-U133 Plus 2.0 
arrays

http://www.ncbi.nlm.nih.gov/pubmed/18194544 2922

D5 Homo sapiens Affymetrix HGU133A plus 2.0 http://www.ncbi.nlm.nih.gov/pubmed/19753302 386

D6 Homo sapiens Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 173

D7 Homo sapiens Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 201

D8 Homo sapiens Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/22646717 313

D9 Homo sapiens Agilent Whole Genome http://www.ncbi.nlm.nih.gov/pubmed/17244347 58

D10 Homo sapiens Affymetrix Human Genome 
U133 Plus 2.0

http://www.ncbi.nlm.nih.gov/pubmed/19596987 758

D11 Homo sapiens Human Genome U133 Plus 2.0 http://www.ncbi.nlm.nih.gov/pubmed/18778695 1791

Supplementary data 2
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