
Introduction 

The construction of a brain network from neuro-

biological data is really a critical point. It is usual-

ly represented in terms of a graph, consisting of 

nodes and links between pairs of nodes, called 

edges of the graph. In large-scale analysis, nodes 

relates to brain regions, while links represent sta-

tistical correlations between such regions. Differ-

ently, small-scale analysis generally focuses on a 

specific neural system, either a sub-system of in-

terest (retina, cortical column, etc.) or a small but 

entire nervous system (e.g., Caenorhabditis ele-

gans, fruit fly, or grasshopper). 

Generally, the number of data obtained perform-

ing any kind of experiment (M/EEG, fMRI, PET, 

etc.) is huge, for example 100 nodes could lead to 

nearly 10,000 data. As a consequence, some 

threshold must be introduced, in order to empha-

size the main interesting outcomes. The choice of 

suitable thresholds is really important since these 

should be able to separate meaningful links from 

weak and non-significant links that might repre-

sent spurious connections, particularly in func-

tional or effective networks. 
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A B S T R A C T

In this paper we propose a new methodology for introducing thresholds in the analysis of neuro-
biological databases. Often, in Neuroscience, absolute thresholds are adopted. This is done by cutting 
the data below (or above) predetermined values of the involved parameters, without an analysis of the 
distribution of the collected data concerning the phenomenon under investigation. Despite an absolute 
threshold could be rigorously defined in terms of physic parameters, it can be influenced by many 
different subjective aspects, including cognitive processes, and individual adaptation to the external 
stimuli. A possible related risk is that, mainly in experiments also de-pending on personal reactions, a 
significant portion of meaningful data, relevant for that specific task, could be neglected. In order to 
reduce these deviations, we are proposing to adopt a task-dependent approach, based on the comparison 
between the collected data and some database concerning a different task, assumed as a baseline. After 
giving the necessary theoretical back-ground, we test our methodology on real EEG data involving two 
subjects in a musical task. In addition to some natural results, new and unexpected neurological links 
can be emphasized and discussed.
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The problem of thresholding data in Neuroscience 

can be considered from various points of view. 

For example, one could concern the selection of 

suitable thresholds during the process of data ac-

quisition. Information is usually encoded in se-

quences of spikes, obtained when the membrane 

potential of the neurons (difference in electrical 

potential between interior and exterior) crosses a 

spiking threshold. It varies with firing history and 

input properties, and different methodologies 

must be exploited for detecting the main mean-

ingful links between the neural activity and the 

recorded signals (see for example Lewicki et al., 

2009).  

A different procedure could depend on the per-

formed experiment, where, sometimes, absolute 

thresholds might be introduced, based on a prede-

termined percentage of time that a given stimulus 

is detected (Waiten, 2007, pp. 120-121; Colman, 

2009). 

On the other hand, an important aspect of thresh-

olding relates to the analysis of the collected data, 

and this is the topic we wish to deal with in the 

present paper. 

For a neural network consisting of n nodes, a 

connectivity matrix A=[aij] is considered, where 

aij represents the detected correlation between the 

nodes i and j, where i,j belong to {1,…,N}. After 

connectivity matrices have been formed, a new 

thresholding methodology must be applied to 

their entries, in order to extract properly the func-

tional weights of the corresponding cerebral are-

as. 

Our proposal is to adopt a task-dependent ap-

proach, based on the comparison between the col-

lected data and some database concerning a dif-

ferent task, assumed as a baseline. Basically, our 

methodology can be adapted to a wealth of data 

sets which are typically gathered in human sub-

jects by non-invasive methods, such as M/EEG 

(Rutter et al., 2013) or fMRI (Friston K.J., 1994), 

but, in principle, there are no restrictions in apply-

ing such a methodology to other in-vivo imaging 

techniques (Friston et al., 1993). 

As an applicative illustration, we have tested our 

proposal on real EEG data (released by the Carlo 

Besta Neurological Institute, Italy), concerning 

two different subjects (in the following referred to 

as Subject A and Subject B), undergoing the same 

musical experiment. More precisely, we investi-

gated the changes in the functional connectivity 

produced by transition from a Basal to a Pleasant 

condition, due to musical experiments. The Basal 

test consisted in a kind of resting state (which can 

be assumed as a sort of baseline), and was deter-

mined when no kind of music was proposed to 

the volunteers. The Pleasant test was obtained 

while listening a piece of music that, according to 

previous studies (Koelsch et al., 2006), is consid-

ered as pleasant. 

In Section 2, we outline the general proposed ap-

proach, to be adopted in comparing different ho-

mogeneous (same subjects) databases. 

Section 3 shows how the methodology can be ap-

plied, giving all details, global comments and re-

marks. In Subsections 3.5.2, 3.5.1 we provide an 

example of graph theoretical approach to real da-

ta. The results are shown in Section 4 ‘Analysis 

and discussion of the results’, while in Section 5 

‘Conclusions’ we resume our conclusions and 

outline possible extensions of our work. 

 

Table I. Brain Atlas 
Node Cerebral Area Node Cerebral Area 

1 Left Amygdala 46 Right Inferior Occipital Gyrus 

2 Right Amygdala 47 Left Middle Occipital Gyrus 

3 Left Angular Gyrus 48 Right Middle Occipital Gyrus 

4 Right Angular Gyrus 49 Left Superior Occipital Gyrus 

5 
Left Calcarine Sulcus (or Left 
Calcarine fissure) 50 Right Superior Occipital Gyrus 

6 
Right Calcarine Sulcus (or 
Right Calcarine Fissure) 51 Left Olfactory Cortex 

7 Left Caudate Nucleus 52 Right Olfactory Cortex 

8 Right Caudate Nucleus 53 Left Globus Pallidus 

9 Left Anterior Cingulum 54 Right Globus Pallidus 

10 Right Anterior Cingulum 55 Left Parahippocampal Gyrus 

11 Left Middle Cingulum. 56 Right Parahippocampal Gyrus 

12 Right Middle Cingulum. 57 Left Paracentral Lobule 

13 Left Posterior Cingulum 58 Right Paracentral Lobule 

14 Right Posterior Cingulum 59 Left Inferior Parietal Lobule 

15 Left Cuneus 60 Right Inferior Parietal Lobule 

16 Right Cuneus 61 Left Superior Parietal Lobule 

17 
Left Inferior Frontal Gyrus, 
Opercular Part 62 Right Superior Parietal Lobule 

18 
Right Inferior Frontal Gyrus, 
Opercular Part 63 Left Postcentral Gyrus  

19 
Left Inferior Frontal Gyrus, Or-
bital Part 64 Right Postcentral Gyrus  

20 
Inferior Frontal Gyrus, Orbital 
Part 65 Left Precentral Gyrus 

21 
Left Inferior Frontal Gyrus, Tri-
angular Part 66 Right Precentral Gyrus 

22 
Right Inferior Frontal Gyrus, 
Triangular Part 67 Left Precuneus 

23 Left Medial Orbitofrontal Cortex 68 Right Precuneus 

24 
Right Medial Orbitofrontal 
Cortex 69 Left Putamen 

25 Left Middle Frontal Gyrus 70 Right Putamen 

26 
Left Middle Frontal Gyrus, 
Orbital Part 71 Left Gyrus Rectus 

27 
Right Middle Frontal Gyrus, 
Orbital Part 72 Right Gyrus Rectus 
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28 Right Middle Frontal Gyrus 73 Left Rolandic Operculum 

29 Left Superior Frontal Gyrus 74 Right Rolandic Operculum 

30 Left Medial Frontal Gyrus 75 Left Supplementary Motor Area 

31 Right Medial Frontal Gyrus 76 
Right Supplementary Motor 
Area 

32 Left Superior Frontal Gyrus, 
Orbital Part 77 Left Supramarginal Gyrus 

33 Right Superior Frontal Gyrus, 
Orbital Part 78 Right Supramarginal Gyrus 

34 Right Superior Frontal Gyrus 79 Left Inferior Temporal Gyrus 

35 Left Fusiform Gyrus 80 Right Inferior Temporal Gyrus 

36 Right  Fusiform Gyrus 81 Left Middle Temporal Gyrus 

37 Left Heschl's Gyrus or Left 
Transverse Temporal Gyrus 82 Right Middle Temporal Gyrus 

38 Right Heschl's Gyrus or Right  
Transverse Temporal Gyrus 83 Left Middle Temporal Pole 

39 Left Hippocampus 84 Right Middle Temporal Pole 

40 Right  Hippocampus 85 Left Superior Temporal Pole 

41 Left Insula 86 Right Superior Temporal Pole 

42 Right Insula 87 Left Superior Temporal Gyrus 

43 Left Lingual Gyrus 88 Right Superior Temporal Gyrus 

44 Right  Lingual Gyrus 89 Left Thalamus 

45 Left Inferior Occipital Gyrus   

 

A mathematical proposal to data-
depending thresholds 

In this section we wish to outline how, in our 

opinion, a good data-depending threshold should 

be selected. We assume to perform a neurobiolog-

ical experiment on a number of volunteers. For 

each volunteer, s different tests are performed, 

each one having duration T. In order to process 

data the temporal length T is split in N sub-

intervals, also referred to as temporal slots, or 

epochs. Data are collected in matrices whose siz-

es depend on the number of nodes (denoted by n) 

and on the number of temporal sub-intervals. 

Hence, we deal with a collection of N matrices of 

size nxn, namely, every temporal slot is character-

ized by functional data collected in the form of a 

matrix with n rows and n columns. This holds for 

each one of the s-performed test. As well-known 

(Friston, 1994; Kaiser, 2011; Rubinov and 

Sporns, 2010; Sporns, 2010), each entry encodes 

statistical dependence between two voxels, each 

one corresponding to neural elements, which can 

be cerebral areas or part of them. Functional brain 

connectivity forms a full symmetric matrix, where 

the range of the entries is the [0,1] real interval 

(generally, we do not consider negative entries 

since anti-correlation is not taken into account). 

We also assume zero entries on the main diago-

nal, which represents the absence of self-loops in 

the neural brain network, meaning that node auto-

correlation is excluded.  

In this paper we deal with functional connectivity 

and Graph Theory applied to Neuroscience. The 

following subsections focus on the description of 

the brain connectivity and on application of the 

Theory of Graphs to Neuroscience. We refer the 

readership to (Finotelli and Dulio, 2015) for a 

more detailed description. 

 

2.1. A bird’s eye view on the brain connec-
tivity 
There are three kinds of brain connectivity: 

structural, functional and effective connectivity. 

These refer to a pattern of links between dis-

tinct units (individual neurons, neuronal popu-

lations, or brain regions) within a nervous sys-

tem. 

- Structural Connectivity (SC): a descrip-

tion of the anatomical connections be-

tween network nodes (i.e., brain re-

gions, neurons); for example, recon-

structed anatomical projections de-rived 

from diffusion MRI, directed anatomi-

cal pathways derived from neural tract 

tracing, or synaptic connections be-

tween individual neurons. 

- Functional Connectivity (FC): it has 

been defined as “the temporal correla-

tion of a neurophysiological index 

measured in different brain areas.” FC 

represents the coupling be-tween dy-

namic activity recorded from separate 

brain areas. Experimentally FC analysis 

has been used to describe temporal cor-

relations across multiple spatial scales 

in PET imaging, M/EEG and fMRI. 

These findings have been used to identi-

fy co-activating brain regions as func-

tional networks. 

- Effective Connectivity (EC): particular 

kind of FC which is related to causal re-

lationships between neural units. Simi-

larly to FC, EC is also a measurement 

of neural interactions in neuroimaging, 

more specifically it considers simulta-

neous interaction of several neural ele-

ments to explicitly quantify the effect 

one element has on another. Using dy-

namic causal modeling (DCM) (see 

Frackowiack et al., 2004) to estimate 
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EC, Mechelli et al. (2003) found that 

early sensory areas changed their effects 

on category-specific areas in relation to 

the stimuli, whereas higher-order asso-

ciation regions did not show such 

changes. 

 

2.2. A brief introduction to Theory of 
Graphs in Neuroscience 
There is a wealth of paper and books on these 

topics (for a survey, see for example Finotelli 

and Dulio, 2015). The brain is a highly inter-

connected network; more precisely, it has a 

complicated SC and FC among its basic con-

stituents, i.e. neurons, synapses and brain re-

gions. The human brain is a complex network 

whose operations depend on how its neurons 

and/or cerebral areas are linked together. 

A graph is a mathematical representation of a 

network. Usually, it is denoted by G(V,E), and 

consists of two sets. The first, V, is the set of 

vertices (or nodes), and the second, E, is the set 

of edges, consisting of pairs of elements from 

the vertex set. We can distinguish four classes 

of graphs: directed, undirected, weighted and 

binary. This relates to the structure of the edg-

es. An edge is directed if its starting and ending 

vertices are specified, otherwise the edge is said 

to be undirected. Whenever it is possible to as-

sociate a number (for example a probability) to 

an edge, then this number is called weight of 

the edge. Differently, if no weight is consid-

ered, then the graph is binary. A binary graph 

can be represented by a binary |V|x|V| matrix 

A, where aij=1 if an edge links the vertices i j, 
and aij=0 otherwise. Historically, Graph Theory 

was born in the 18th century, thanks to Leon-

hard Euler. He solved the challenging problem 

of finding a walk through the Prussian city of 

Konigsberg, crossing each one of its seven 

bridges precisely once. 

In Neuroscience, Graph Theory helps in inves-

tigating the functional and the structural con-

nectivity among the cerebral areas. In case of 

functional connectivity, edges represent statis-

tical relationships between couple of different 

cerebral areas (labeled with nodes), while, for 

structural connectivity, edges are defined by 

anatomical connections, the white fibers (rather 

than statistical relationships).  

Thought, at present, the relationship between 

SC and FC is not completely clear, it is possible 

to think of structural brain networks as the 

physical substrate which underpins the func-

tional brain networks, at least at the resting 

state (Grecius et al., 2009). 

A model of the brain should be sensitive to fac-

tors which may alter the underlying connectivi-

ty structure or cognitive functionality. Complex 

brain networks show sensitivity to: behavioral 

variability (Bassett and Bullmore, 2009), cogni-

tive ability (Van den Heuvel et al., 2009), ge-

netic information (Schmitt et al., 2008), aging 

(Meunier et al., 2009), gender (Gong et al., 

2009), drug treatments (Achard et al., 2007), 

neurological diseases (for example Alzheimer’s 

(Stam et al., 2009), schizophrenia (Lynall et al., 

2010) and a clinical state such as acute depres-

sion (Leistedt et al., 2009). Complex network 

theory is also particularly appealing in the 

study of clinical neuroscience where disease 

and other clinical states have been character-

ized by hypo-connectivity, hyper-connectivity, 

and non-connectivity profiles. 

A very important role in the graph theoretical 

analysis is played by the metrics. Metrics can 

be divided into two categories: topological and 

physical. Some important topological metrics 

are, for instance, the degree of a node, the pres-

ence of cycles, the clustering coefficient, the 

local and global efficiency, the modularity. 

Some usually employed physical metrics are 

the mean connection distance, the tract length 

and the Rent’s exponent. For further details we 

refer the reader to Sporns (2010) or other simi-

lar books. 

In the authors’ opinion, a basic example of ap-

plication of Graph Theory to Neuroscience is 

the Default Mode Network (DMN). The DMN 

is characterized by the activation of specific 

cerebral areas during the cognitive rest. Basi-

cally, such areas are: The medial prefrontal cor-

tex, medial temporal lobes, posterior cingulate 

cortex, and the precuneus. These areas, which 

are strongly mutually connected, provide the 

nodes making up the vertex set of the graph 

representing the DMN (DiPasquale et al., 2016; 

Grecious et al., 2009; Raichele, 2015). 
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2.3. Statistical approach to threshold selec-
tion for the analysis of analogies and dis-
crepancies between two tests 
The first step in the analysis consists in import-

ing the available row data of each volunteer in 

terms of manageable files. This can be done by 

means of some technical computing software 

(in our approach we have employed Matlab®). 

In order to save space the storage of data can be 

confined in the upper (or lower) triangular part 

of the matrix, which leads to Nxs different tri-

angular nxn-sized matrices A(s)
t  Moreover, each 

entry should be rounded at some decimal digit, 

depending on the demanded precision. For each 

fixed epoch t, and for each test s, the entry ahk 

of A(s)
t  denotes the functional connectivity be-

tween the nodes h and k, at the fixed time t, and 

during the test s. 

Once the s tests have been encoded in the col-

lections {A(s)
t : t {1,…,N}}, the comparison be-

tween any two different collection should be 

considered, in order to point out, for a same 

volunteer, the main analogies and discrepancies 

resulting from the different tests. A natural ap-

proach is to manage the matter by computing 

the difference matrices of corresponding ele-

ments. However, a main problem in this analy-

sis could be caused by the fact that each one of 

the s available tests has no temporal correlation 

with the others, so that it is not clear which el-

ements of two different collections should be 

considered as correspondent. This means that, 

for a fixed index t {1,…,N}, the matrix A(s)
t  in 

general refers to different  temporal slots for 

different values of s (performed tests). For in-

stance, the matrix A(1)
3 , belonging to the first test 

and collected at the third epoch, is not neces-

sarily related to the matrix A(2)
3 , collected at the 

same third epoch but concerning the second 

test. As a consequence, a precise picture of the 

comparison between a pair of tests requires a 

kind of randomization, namely, we must com-

pute all the possible differences between pairs 

of matrices of the corresponding collections. In 

detail, for each test s , and for each fixed tem-

poral slot i {1,…,N}, the matrix A(s )
i

should be 

cross-confronted with all the other (s-1)xN ma-

trices, that is, we must consider A(s )
i
−A(s)

i with 

s ≠ s and i {1,…,N}.  

For any pair s , s , such a randomization creates 

a cell of order NxN made up of matrices whose 

size is nxn. 

Since multiple tasks should be compared pair-

wise, in what follows we can focus, without 

loss of generality, just on the main case when 

two different tests s= s and s= s  are performed. 

If we assume one of them, say s , as a reference 

baseline, then the comparison procedure de-

tailed below can be interpreted as a general 

methodology of thresholding the data collected 

during the test s , on the basis of their analogies 

and discrepancies with respect to the baseline. 

 

2.3.1. Analogies and discrepancies be-
tween a pair of databases 
Assume that two tests s= s  and ss ~=  have been 

proposed to some volunteers. For each volun-

teer, we need to consider the matrices A(s )
i −A

(s )
j , 

i,j {1,…,N}, with i fixed time by time. 

In order to point out analogies and discrepan-

cies between the two tests we focus on the en-

tries having, respectively, smaller and greater 

absolute values, because they denote the greater 

agreement ad difference in correlations. Since 

we are dealing with the functional connectivity, 

the entries of each matrix can assume values in 

[0,1], so that the range of the entries of each 

matrix A(s )
i −A

(s )
j   is the [-1,1] real interval. There-

fore one should be mainly interested to center 

the focus on a right neighbor of -1, on a left 

neighbor of +1, and on a neighbor of 0. We call 

neighbors of interest (NOI) such neighbors. 

The width of the NOI depends on the distribu-

tion of the entries of each matrix. The right 

neighbor of -1 represents the situation where 

the test s  dominates s , while the left neighbor 

of +1 refers to the opposite situation. The 

neighbor of 0 gives information about the do-

main where the tests s  and s  can be assumed 

as invariant. With the purpose of analyzing the 

entries of the matrices A(s )
i −A

(s )
j , we organize 

each column, or equivalently each temporal slot 

i, in a single nx(nxN)-sized matrix Ci = [chl ]i
(where h {1,…,n}, l {1,…,nxN}, and 

nd
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i {1,…,N}), obtained by connecting the rows 

of all the  matrices A(s )
i −A

(s )
j  of size nxn, 

j {1,…,N} (see Equation (1) below).   

In summary, for each column, that is related to 

a temporal slot, a single matrix is obtained, 

made up by placing side by side N matrices of 

size nxn. For example, for the first temporal 

slot i=1, the matrices A(s )
1 −A

(s )
1 , A(s )

1 −A
(s )
2 ,…,A(s )

1 −A
(s )
N  

must be placed side by side, in order to get one 

single matrix C1 = [chl ]1 , where h {1,…,n}, 

l {1,…,nxN}. Similarly for the other temporal 

slots. At the end of this process N different ma-

trices C1 = [chl ]1 , C2 = [chl ]2 ,…, CN = [chl ]N  are gener-

ated, that is, for all i {1,…,N}, we have 

 

    ].AA ...AAAA[C )s~()s(
2

)s~()s(
1

)s~()s(
Niiii −−−=

 (1) 

Once such matrices are obtained, an analysis on 

their entries is demanded. The entries of every 

matrix Ci are collected in a single array by con-

catenating the N rows. This means that N ar-

rays, each one composed by nx(nxN) elements, 

are generated. This operation is needed to start 

the statistical analysis. 

 

Remark. A very special case is obtained when 

s concerns the resting state. Actually, it is the 

default neurobiological baseline, therefore no 

test smust be performed, and, consequently, no 

randomization is required. In this case the ma-

trices Ci are simply replaced by A(s)
i , for all 

i {1,…,N}, so we have just one matrix for 

each epoch. In case different volunteers are 

considered, then the entries of Ci are assumed to 

be the mean values of the corresponding entries 

in the matrices associated to each volunteer, at 

the same epoch i {1,…,N}. We have already 

applied our method to fMRI real data coming 

from resting state experiments on 133 different 

right-handed subjects, males and females, 

whose age spanned between 6 and 79 years, see 

the poster by Dipasquale et al. (2015). See also 

Section 4 ‘Analysis and discussion of the results’ 

for further comments. 

 
 

2.3.2. First thresholding step 
We wish now to detail all the steps leading to 

the matrices that we propose to work with in 

performing a neurobiological analysis. Since 

we are assuming as a reference database, any 

threshold introduced on the distribution the dif-

ferences represents an intrinsic thresholding 

procedure concerning the database s , normal-

ized with respect to the baseline. 

As a first step, the distribution of the entries of 

every array Ci (consisting of the differences be-

tween the databases) should be computed, and 

increasingly ordered, so obtaining an ordered 

distribution that can be visually represented in 

the form of a histogram (see Figure 1). The 

number of bins can be arbitrarily selected. This 

is just related to the resolution visualization of 

the ordered distribution, and has no influence 

on the further thresholding steps. Since the 

range of the entries does not necessarily span 

the whole interval [-1,1], using increasing 

numbers of bins might allow a better visualiza-

tion of the tails.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, if one is interested in the analysis 

of the discrepancies between the two databases, 

namely, on the links where s  is strongly differ-

ent from, then the focus is on the tails of the 

distribution. Differently, if one is interested in 

the analogies between the databases, namely on 

the links where s  mainly matches, then the fo-

cus is on the center of the distribution.  

Therefore, starting from the ordered distribu-

 

].AA ...AAAA[C )s~()s(
2

)s~()s(
1
)s~()s(

Niiii
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tion, and according to the specific analysis to be 

done, we wish to extract a NOI of suitable 

width. This is obtained by selecting a reasona-

ble percentage   of data to be assumed as mean-

ingful for the experiment in the required NOI. 

To this, we proceed as follows. 

 

- Increasingly ordering Ci, we get a dis-

tribution Di, from which we extract the 

sub-distribution , consisting of the 

strictly positive entries, and the sub-

distribution , consisting of the strictly 

negative entries. 

- Define a quantile subdivision for  

and . We recall that q-quantiles par-

tition a distribution into q subsets, each 

one containing the (100/q)% of the data 

of the distribution. Therefore, for each 

integer k such that 1≤k<q, the 

(100k/q)% of the data cumulates below 

the k-th quantile, and, of course, the 

(100(q-k)/q)% above. The choice of the 

quantile subdivision reflects in the 

width with which we can investigate the 

NOI. Since we are usually working with 

a great number of data, a percentile 

choice, namely q=100, is mainly sug-

gested. 

- Let’s now focus on the positive distribu-

tion , and select a suitable quantile k 

for the analysis of its right tail, corre-

sponding to the NOI of +1. The length 

of the tail depends on k, and consists of 

the percentage k)/q)%(100(qp −=  of the 

highest values of Di. Of course, the 

length also depends on q. The greater q, 

the shortest is the tail, and consequently 

the stronger discrepancies between s  

and s  are detected. 

- The same is done for the negative dis-

tribution , which leads to the con-

struction of its left tail, corresponding to 

the NOI of -1, and formed by the per-

centage k)/q)%(100(qp −=  of the entries 

below a quantile k’ suitably selected for 

the analysis of lowest values of Di. 

- Concerning the choice of k,k’, we can 

investigate on the symmetry of the dis-

tributions Di, for instance by comparing 

Di with a normal distribution. This can 

be done by means of a Q-Q Plot, name-

ly, by plotting the quantiles of Di 

against the quantiles of a normal distri-

bution. In case the answer is positive, 

namely if the Q-Q Plot is almost linear, 

then we can assume k’=q-k, so that the 

same percentage   is employed for se-

lecting the lowest data for the left tail 

and the highest data for the right tail. 

The reference quantile k can be mean-

ingfully selected according to some 

standard choice, such as the 95-th per-

centile, or even the 99-th percentile for 

emphasizing very strong tails. 

- Differently, if Di does not show sym-

metric properties, then a convenient 

choice of k,k’ demands a deeper analy-

sis of the sub-distributions  and 

In particular, k k’ should be fixed ac-

cording to the difference in cardinality 

of the positive and the negative sub-

distributions. 

- The same Q-Q Plot comparison can be 

performed, separately, for the distribu-

tions  and , in order to check 

their possible symmetry. In case, we 

define the NOI of 0 as formed by the 

union of a negative interval, a zero in-

terval, and a positive interval. The nega-

tive interval is the right tail of D−
i , con-

sisting of the k)/q)%(100(qp −=  of its 

highest values. The positive interval is 

the left tail of , consisting of the 

k)/q)%(100(qp −=  of its lowest values. 

The zero interval includes all the links 

corresponding to Di \(D
−
i∪D

+
i) . 

- Differently, if the values of  or of D+
i  

(or of both) are not symmetrically dis-

tributed, then the suitable quantiles in-

volved in the construction of the right 

tail of , and of the left tail of , 

should be selected by means of a deeper 

analysis of the distributions far away 

from the corresponding mean values.  
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Once the reference quantile positions k, k’ have 

been fixed, their specific values ξi must be 

computed for each i {1,…,N}, which reflects 

in the introduction of a different threshold for 

each one of the matrices C1,…,CN. Concerning 

the neighbor of -1, and denoting by (L)ξi  the 

value of the quantile k’ at epoch i  (L stands for 

left tail), then we have ],c[][CC hl
i

L
-

ii == where 

 

⎩
⎨
⎧ ≤

=
. otherwise                   0

(L),ξc      if        1
c ihl

i

hl
i

 
 

This turns Ci = [c
i
hl ]  

into a binary matrix Ci = [c ihl ],

and consequently related to an undirected graph 

(Salvador et al., 2005). Analogously, for a 

neighborhood of +1, denoting by (R)ξi  the 

value of the quantile k at epoch i {1,…,N} (R 

stands for right tail), we get the binary matrix 

Ci = [Ci ]
+
R = [c

i
hl ],where 

 

⎩
⎨
⎧ ≥

=
. otherwise                   0

(R),ξc      if        1~ ihl
i

hl
ic

 
 

In case of a neighbor of 0, both (L)ξi  and (R)ξi  

must be employed, and the interval 

(R))ξ(L),(ξ ii  is considered.  

This thresholding procedure keeps into account 

the real meaning of the data for the volunteer, 

and consequently it seems of special interest for 

subject-dependent neurobiological analysis. 

Also, it is easily adaptable to different evalua-

tions, simply changing the reference quantile, 

and the corresponding percentage of data form-

ing the size of the NOI. Basically, this may be 

interpreted as a control of the degree of sparsity 

of the available data, and it is in accordance to 

what is usually expected (Rubinov and Sporns, 

2010; Sporns, 2010). 

 

Remark. In the case of the resting state, the 

tails refer to the neighbors of 0 and of 1 (since 

no task s  is performed). In particular, one is 

mainly interested in the neighbor of 1, where 

the highest functional connectivity is registered. 

 

2.3.3. Second thresholding step 
For each i {1,…,N}, the corresponding N left 

thresholded nxn-sized binary matrices Ci  

should be summed up to form a matrix Si (L)  

that condenses the information in the right 

neighborhood of 1. Each entry ofSi(L) ranges 

from 0 to N, which denotes the number of slots 

of T/N seconds where the corresponding pair of 

nodes are correlated. Analogously, a matrix 

Si (R) , where the information in the left neigh-

borhood of 1 are condensed, is obtained. 

From these matrices several types of graphs can 

be derived that could be assumed as representa-

tive of the transition between a test s  and s . 

These could be obtained by fixing a new 

threshold λ, λ {1,…,N}, corresponding to the 

minimum number of slots of T/N seconds that 

we assumed as indicative of a permanent dif-

ference between the s  and the s  states. Then 

we binary threshold each entry α of Si(L) by 

setting α=1 or α=0 according as α≥λ or α<λ. Of 

course λ=N denotes an absolute permanent dif-

ference, and represents a theoretical threshold. 

More realistically, we should relax this thresh-

old to some intermediate value. To this, it is 

advisable to compute the maximum entry Mi of 

each matrix Si(L) , and investigate the cases 

where λ concerns some percentage of Mi, such 

as λ =4/5Mi, or λ =1/2Mi, corresponding, re-

spectively, to keep all the entries that appear in 

the 80%, or in the 50% of the slots. 

According to the selected value of λ, the repre-

sentative graph changes. The greater λ, the 

smaller is the number of extracted links, so that 

their importance in the neurobiological inter-

pretation increases. On the other side, higher 

values of λ could miss some important links 

that, despite their lower weights, could be 

worth being considered. To this, we suggest to 

investigate different values of λ, so providing, 

for a same p , representative graphs having in-

creasing structural richness, and where weaker 

links, previously excluded, progressively can 

appear. 
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2.3.4. Graph theoretical approach 
Theory of Graphs (Bollobás, 1985) is used to 

model the brain seen as a complex network 

(Bullmore and Bassett, 2009; Bullmore and 

Sporns, 2009; Finotelli and Dulio, 2015; Rubi-

nov and Sporns, 2010; Sporns, 2010) both for 

healthy subjects and in case of brain disorders 

(Fornito et al., 2015; Kazaeee et al., 2015). This 

kind of analysis bases on the weights associated 

to the various edges. In Finotelli and Dulio 

(2015b), for example, a model to evaluate 

weights in functional connectivity has been 

proposed and commented. The selection of the 

meaningful edges follows from the adopted 

thresholding procedure. In this respect, after the 

two steps thresholds have been introduced, our 

proposal leads to a data-depending edge selec-

tion forming a graph λ,pG , which describes the 

brain network associated to the performed test, 

in the selected NOI, and depending on the con-

sidered parameters, p  and λ, employed as 

thresholds. 

 

 

Experimental procedure 

As an applicative example we consider an acous-

tical experiment, where two volunteers were sub-

jected to a pleasant music and a resting state. 

A similar example was treated in Wilkins et al. 

(2014) and in Wu et al. (2013). In such papers the 

effect of music on the brain is considered. From 

(Wilkins et al. (2014), it comes out that regardless 

of the acoustical characteristic, functional brain 

connectivity depends on whether the music is 

liked or disliked. Interestingly, listening to music 

that is liked affects functional connectivity in re-

gions involved in self-referential thought and 

memory encoding, such as the default mode net-

work and the hippocampus. 

Moreover, Wu et al. (2013) reveals that music 

perception induces an increased synchronization 

of cortical regions and amore random network 

configuration. The difference in network architec-

ture is not observed between musical stimuli. 

These findings imply that music perception leads 

to a more efficient, but less economical, structure, 

and requires more information processing as well 

as cognitive effort. 

 

3.1. Subjects and EEG recording protocol 
The study involved 2 healthy subjects, the subject 

A is a male of 39, while B is a female whose age 

is 27, without any professional musical training. 

On the other hand, due to differences in age, sex 

and stimulus reactivity, we expect to find differ-

ences as well. 

The present study was approved by the Ethics 

Committee of Carlo Besta Neurological Institute 

Milan, Italy. Written informed consent was ob-

tained from the subjects. 

Hd-EEG (High density EEG) were recorded in a 

dimly lit room using using a Waveguard 128-

channel electrode with active cable-shielding 

technology (Advanced NeuroTechnology (ANT), 

Enschede, Netherlands), and acquired at a sam-

pling rate of 512 Hz (ASA Lab, Advanced Neu-

roTechnology (ANT), Enschede, Netherlands). 

Each channel was referenced to the average of all 

channels. 

The EEG session started with a 5 minutes eyes-

closed resting-state recording. Thereafter, sub-

jects were presented with one minute length of a 

musical piece, J. S. Bach: Rejouissance BWV 
1069, alternate with silent condition. This piece 

was defined as ’pleasant’ stimulus, according to 

previous fMRI and EEG studies (see Sammler et 

al., 2004 and Koelsch et al., 2006). (sound sample 

of the stimulus is available at http://www.stefan-

koelsch.de/Music_Emotion1). 

Before the analysis, EEG recordings were filtered 

using a digital 1-120 Hz (12 db/octave) band-pass 

filter followed by a 50 Hz notch filter to suppress 

the noise of the electrical powerline. Moreover, 

the EEG data were normalized by subtracting the 

mean value and dividing the result by the stand-

ard deviation. The EEG section during the pleas-

ant musical stimulus was considered for the anal-

ysis, and compared with 1 minutes of EEG rec-

orded at basal condition, free of any physiologic 

(e.g. eye-blink) and non-physiologic artifacts. 1 

min of artifact-free EEG recorded at resting con-

dition1. 

1We remind the reader that the basal condition is a sort of 

“baseline”. It consists of a minute of recording EEG signal 

while the subject is sit relaxed with her his eyes closed. The 
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3.2. Beamforming source reconstruction 
For the construction of the beamformer spatial 

filter’s weights, a time window of 120 seconds 

120 seconds (one minute resting-state and one 

minute during the “pleasant” condition) was 

used for the computation of the data covariance 

matrix (Hillebrand et al., 2012). For each re-

cording the forward problem was solved and 

expressed as a leadfield matrix (i.e. the matrix 

that contains information on the geometry and 

conductivity of the model and represents the 

linear relationship between source-space and 

measurements). The leadfield matrix was based 

on a volume conduction model created from a 

segmentation of the MNI template MRI into 

brain, skull and scalp compartments having 

conductivity values of 33 mS/m, 0.41 mS/m 

and 33 mS/m, respectively. A template elec-

trode set according to the international 10-05 

system was used (Oostenveld et al., 2001).  

Sensor data was projected into source space by 

means of a linearly constrained minimum vari-

ance beamformer (Van Veen et al., 1997). The 

LCMV beamformer acts as a spatial filter 

whose weights are computed to maximize the 

sensitivity to signals originating from a specific 

location of interest, whilst reducing the signals 

from other sources. The beamformer weights 

for a source at a location of interest are fully 

determined by the data covariance matrix and 

the forward solution (leadfield) (Van Veen et 

al., 1997). The spatial filters obtained for each 

subject were multiplied with the EEG sensor 

time series to derive the time course of each 

voxel (or virtual electrode), defined on a regular 

5mm spaced grid covering the entire brain vol-

ume (in total 7,780 virtual electrodes were con-

sidered). 

We clustered the entire set of virtual electrodes 

in regions of interests (ROIs) according to the 

AAL atlas by Tzourio-Mazoyer (2002), and 

assigned to each electrode the label of the cor-

responding AAL region. For this study 89 re-

gions of the AAL atlas (out of 116) were con-

sidered (see Table 1 for a list of the labels 

used). It should be noted that the number of vir-

tual electrodes was different across ROIs.  

subject do not receives any stimulation. 

According to this anatomical clustering, we re-

duced the dataset in source space by imple-

menting a strategy described in Hillebrandt et 

al. (2012). For each subject, the spectrum for 

each virtual electrode time-series was comput-

ed, and divided into the 5 classical EEG bands 

(delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 

Hz), beta (13-30 Hz), and gamma (30-48 Hz)). 

For each ROI and frequency band separately, 

we selected the voxel with maximum relative 

power in the theta band2, and used the time-

series for this voxel for further connectivity 

analysis. As a result, we obtained a set of 89 

virtual electrodes time series (120s long) for 

each subject. We decided to focus on the theta 

band because previous studies demonstrated its 

relevance in the cognitive processing of musi-

cal stimuli (Sammler et al., 2007; Flores-

Gutiérrez et al., 2007). 

As a final step, the virtual electrodes time 

courses of each condition (basal and pleasant) 

were divided into 29 non-overlapped, artifact-

free, 2 s length epochs. All the previous com-

putations were performed by custom-made 

software in Matlab® and functions of the 

Fieldtrip toolbox (Oostenveldt et al., 2011). 

 

3.3. Connectivity Analysis 
The adjacency matrix were estimated by apply-

ing the phase locking value (PLV) connectivity 

method to the source reconstructed signals. The 

phase locking value (PLV) was first introduced 

by Lachaux et al. (1999), as a simple and prac-

tical method to evaluate frequency-specific 

phase synchronization between couples of neu-

rophysiological signals. 

The PLV formulation was inspired by the first 

experimental evidences showing that the large-

2 The signal of each source (or virtual electrode) was analyzed 

by the FFT (Fast Fourier Transform), then, it was calculated the 

relative power in theta band, which corresponds to the integral 

of the spectrum between 4 and 8 Hz normalized with respect to 

the total power (i.e. the integral of the spectrum along the 

band). At this point, each ROI of the atlas (see Table 1) con-

tains many virtual electrodes (any ROI is associated to nearly 

hundred virtual electrodes), each with its own value of relative 

power in theta band. In order to select a single virtual electrode 

(with its signal), representative of a given ROI, it was chosen 

the one that showed the maximum power in theta band within 

that given ROI.
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scale integration mechanisms of the brain are 

supported by the ability of different neuronal 

populations to oscillate at different frequency 

ranges and to exchange information by entering 

into phase locking (see for details Lachaux et 

al., 1999). 

The original process to compute the PLV was 

aimed at quantifying the stability of the phase 

differences between couples of signals across 

multiple trials of the same process. In order to 

extract the instantaneous phases of each signal 

at a desired frequency range, we initially band-

pass filtered the EEG signals for each experi-

mental condition in 5 different frequency 

bands: δ(0.5-4 Hz), ϑ(4-8 Hz), α(8-13 Hz), 

β(13-30 Hz), γ(30-80 Hz). Then the Hilbert 

transform was used to obtain the analytic phase 

for a frequency band at a time point t as: 

 

ϕx (t) = arctan
ux(t)

vx (t)

⎛

⎝
⎜

⎞

⎠
⎟

,    (2) 

where v is the real part and u the imaginary part 

of the analytic signal, and subscripts x and y 

indicated the two EEG time series being ana-

lyzed. The PLV is then defined as 

 

∑
=

−=
N

tN 1

))t()t(i( yxe1PLV φφ
                           (3)  

 

where N represents the number of time points 

in a time window and || the complex modulus. 

If the phase difference varies little the PLV 

value is close to 1, otherwise if the phases are 

uniformly spread on the unit circle the PLV, 

averaged across a sufficient number of epochs, 

will be close to 0. 

For each temporal epoch, PLV was calculated 

between each pair of signals, thus obtaining for 

each subject 3 dimensional Adjacencies Matri-

ces of size: [number of channel x number of 

channel x number of epochs]. 

 

Remark. Using individual MRI scans could, in 

principle, lead to better results. However, we 

carefully adopted the strategies suggested by 

previous studies in case the individual MRIs 

are not available, see for example Michel et al. 

(2004). In detail, as suggested by Acar et al. 

(2013) we used a 4-layer template BEM, accu-

rately warped to a 128 co-registered electrode 

set. An example of other studies using this 

technique is shown in Bathelt et al. (2013); in 

this study the authors demonstrated that, alt-

hough using a template MRI, important and 

significant insights about the network organiza-

tion of the brain can be gained. The selection of 

a spatial subsample of voxels is a necessary 

step to reach a physiologically relevant trade-

off between computational efficiency (connec-

tivity between tens of thousands voxels would 

be highly inefficient and could seriously lead to 

the detection of spurious correlations) and a 

functionally relevant spatial sampling of the 

human brain. As demonstrated in Hillebrand et 

al. (2012) choosing the voxel with maximum 

relative power in a frequency band lead to 

meaningful results and is computationally effi-

cient. In fact, in Brookes et al. (2004) the au-

thors demonstrated that the time-series estimat-

ed at local maxima best describe the underlying 

source activity. As possible drawback of this 

method, it has been demonstrated that, in da-

taset with large artifact, these artifacts could 

reflect in power estimation and thus bias the 

voxel selection. Therefore, in this study, we 

carefully selected epochs without artifacts that 

could potentially affect the theta band. Never-

theless, other possible voxel selection tech-

niques have been proposed, described in Hille-

brand et al. (2012). In particular, the technique 

of averaging signals within a ROI before Fouri-

er transformation, could lead to spurious con-

nectivity results since it would generate a signal 

with disrupted phase characteristics; plus, inter-

ference and cancellations of theta band oscilla-

tions might occur, thus leading to a representa-

tive signal which would not reflect the activity 

of the ROI at all. 

 

3.4. Basal-Pleasant phase transition. Data 
analysis. 
The purpose of our analysis is to apply the task-

dependent thresholding procedure for recon-

structing a neural graph whose edges represent 

the connections, common to the two volunteers, 

which are “steadily different” during the phase 
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transition Basal-Pleasant. In what follows we 

give all the details concerning Subject A, while 

for Subject B we just provide the corresponding 

results. 

 

3.4.1. Processing the data 
The first step in our analysis consisted in im-

porting the available 29x2 different upper-

triangular 89x89-sized matrices A(s)
t  as Matlab® 

files. In this example we treat the phase transi-

tion between two phases: the Basal (the data-

base s ) and the Pleasant (the database s ) con-

dition. As explained in Subsection 2.3.2, for 

each fixed t and s, the entry ahk [0,1] of A(s)
t  

denotes the functional connectivity between the 

nodes h and k, at the fixed time t, and in the 

fixed state s ∈ {s ,s} . Also, due to functional 

symmetry, ahk=akh for all h,k {1,…,89},  so that 

each matrix A(s)
t , 1≤t≤29, s ∈ {s ,s} , was available 

in its upper-triangular form, where ahk=0 for all 

h ≥k. Zero entries on the main diagonal mean 

that the autocorrelation of nodes is excluded. 

Moreover, each entry was rounded at its fourth 

decimal digit. 

The comparison between the Basal and the 

Pleasant test has been managed by computing 

the differences of the elements belonging to the 

corresponding databases. 

For a clearer presentation, in the following we 

denote A(s )
t  by BAt, and A(s )

t  by PLt 

 

3.4.2. Data analysis 
For any fixed temporal index i {1,…,29},we 

have computed  BAi-PLj for all j {1,…,29}, so 

collecting a table as represented in Figure 2.

 

 

 

 

 

 

 

 

 

 

 

This table can be explored both in the horizon-

tal and in the vertical directions. Each column 

resumes the comparison of a fixed Basal tem-

poral slot with all the 29 Pleasant temporal 

slots. The converse holds for the rows. 

According to our target, we want to character-

ize the correlations between pairs of nodes that 

are more sensitive to the transition from the Ba-

sal to the Pleasant test. This means that we need 

to look for entries having greater absolute val-

ues, because these denote the greater differ-

ences in correlation. Since the range of the en-

tries is [-1, 1], the NOI are a right neighbor of -

1, and a left neighbor of +1, the width of these 

neighbors depending on the percentage p  of 

data to be considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To this purpose, we organized each column in a 

single 89x2581-sized matrix Ci = [chl ]i  i {1,…, 

29}, h {1,…,89}, l {1,…,2581}, obtained by 

connecting the rows of all the 29 matrices BAi-

PLj (j=1,…, 29) of size 89x89 forming the col-

umn. Then we computed the distribution of the 

entries in each matrix, which result in histo-

grams organized in ten different bins, and rep-

resenting the corresponding ordered data distri-

butions Di, i {1,…,29}. See for example Fig-

ure 3 for the case C1=BA1-PLj, j=1,…, 29, con-

cerning the first epoch. By means of a Q-Q Plot 

we get an almost linear answer at each epoch, 

so that we can assume that the values of each Di 

are symmetrically distributed. This allows us to 

constructed the NOI of -1 and of +1 with the 

same percentage of data, the lowest p  and the 

t

 

Histogram showing the distribution of the values 
of the entries of the set of matrices  
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highest p , respectively. To this, we have con-

sidered a percentile subdivision, and assumed 

the reference percentile at k=95, so that, due to 

symmetry k’=5, and consequently p  consists of 

the 5% lowest (left tail) and of the 5% highest 

(right tail) entries of the distributions. We refer 

to this percentage of data as the meaningful da-
ta of our analysis. 

 

3.4.3. First thresholding step 
From the ordered distributions Di i {1,…, 29}, 

we have extracted the sub-distributions D−
i and 

D+
i  consisting of the negative, and of the posi-

tive entries, respectively. We computed a Q-Q 

Plot against a normal distribution, which al-

ways returned a positive answer for all i {1,…, 

29}. Further, also the distributions Di proves to 

be quite good symmetrically approximated for 

all i {1,…, 29}, which suggested to work with 

reference quantiles k, k’ such that k’=q-k. In 

particular, we adopted a percentile subdivision, 

namely q=100, and assumed k equal to the 95-

th percentile, so that k’ corresponds to the 5-th 

percentile. As a consequence, we have con-

structed both the left tail of D−
i  (NOI of -1) and 

the right tail of D+
i  (NOI of +1), by using the 

same percentage p =5% of the extreme data 

(negative or positive), for all i {1,…, 29}. In 

what follows we give all details of the proce-

dure concerning the right neighbor of -1. It is 

the neighbor where the Pleasant condition pre-

vails on the Basal condition, namely, it repre-

sents the links that are overstimulated by the 

musical task. The left neighbor of +1 has been 

treated analogously, and just the corresponding 

results are shown and commented. 

In order to extract the meaningful data, we have 

computed, at each epoch i {1,…,29}, the value 

of the 5th percentile, representing the threshold 

(L)ξi  determining the right neighborhood of -1. 

In Table 2 we report the complete list of the 

first thresholds. Then, for each i {1,…,29}, we 

turned each Ci=BAi-PLj in a thresholded binary 

matrix ],c[][CC L
-

hl
i

ii == as explained in Sub-

section 2.3 

The corresponding 29 left thresholded 89x89-

sized binary matrices had been later summed 

up, to form a matrix Si(L)   that condensed the 

information in the right neighborhood of -1. 

Each entry of Si(L)  could assume a value rang-

ing from 0 to 29, which denotes the number of 

slots of 2 seconds where the corresponding pair 

of nodes was correlated. 

  

3.4.4. Second thresholding step 
After forming the above thresholded matrices 

we looked for new thresholds, corresponding to 

the minimum number of slots of 2 seconds to 

be assumed as indicative of a permanent differ-

ence between the Basal and the Pleasant states. 

To this, we first computed the effective maxi-

mum Mi of each matrix (L)Si  (and the same for 

(R)Si ), and later we have investigated the cases 

where λ=Mi, λ=4/5Mi (corresponding to the 

80% of the slots), and λ=1/2Mi (namely, the 

50% of the slots). The results obtained in the 

case i=1 are shown in the example below. 

 

Example. Let us consider the 29 thresholded 

binary matricesC1 = [C1]
-
L = [BA1-PL j]t

-,  (the sub-

script t stands for “thresholded”, while the su-

perscript specify that the analysis focused on 

the right interval of -1). Summing up the same 

entries in all these matrices we get the integer 

valued89x89-sizedmatrix S1(L) . We found that 

the maximum entry of such a matrix is M1=29 

(note that, a priori, the maximum entry could 

be less than 29). This means that, when match-

ing the first Basal matrix BA1 with all the 29 

Pleasant matrices PLj, some links exist which 

are always meaningful all over the 29 compari-

sons (see Figure 4). Therefore, by assuming 

λ=29, we set any entry α of S1(L)  equal to 1 or 

0, according as α=29 or α <29. The resulting 

binary matrix represent a graph G15%,29 that we 

assume as representative of the right neighbor 

of -1 for what concerns the comparison of the 

first slot of the Basal test with all the slots of 

the Pleasant test. By analyzing Figure 4 we 

note that G15%,29  consists of only one link (the 

dark-red colored pixel). It represents the con-

nection between the nodes 17 and 21 corre-

valued 89x89-sized matrix

C
–
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sponding, respectively, to the left inferior 

frontal gyrus, opercular part and the left inferior 

frontal gyrus, triangular part (see the atlas in 

Table 1). 

 
Table II. The values of 95-th percentile in the different 29
epochs for Subject A and Subject B. 
EEpoch SSubject A SSubject B 

 Neighbor -1 Neighbor 1 Neighbor -1 Neighbor 1 
 Percentile Percentile Percentile Percentile 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

 

By repeating the procedure for all i {1,…,29}, 

we get the graphs Gi
5%,29 , and, from them, the 

graph G5%,29 that summarize the analysis in the 

right neighbor of -1. More precisely, the graph 

G5%,29 consists of all links which appear in every 

graph Gi
5%,29 , for all i {1,…,29}.  

By weakening λ to the (integer rounding of the) 

80% or 50% of the maximum value (respec-

tively 23 and 14 for M1=29), and by repeating 

the procedure, we get the graphs G5%,23 and G5%,14

The three graphs G5%,29 ,G5%,23 and G5%,14  together, 

summarize the analysis of the right neighbor of 

-1 for different values of the data-depending 

thresholding parameters. 

The same procedure has been carried out on the 

left neighbor of +1, and repeated on Subject B, 

both in the neighbor of -1 and of +1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Interpretation of the results 
The analysis of the two databases for Subject A 

and Subject B provides several interesting in-

formation. First, for any subject it is possible to 

understand which are the most recurring links 

throughout all the temporal slots (horizontal 

analysis). Second, the results of this analysis 

can be shown in terms of graphs, representing 

the involved cerebral network. By using differ-

ent values of λ we pull out information about 

the links involving the “stronger” nodes, al-

ways present in the vertical analysis (see Figure 

2), or links emerging after a relaxed threshold-

ing process (cf. Subsection 3.4.3). We apply 

this procedure for both subjects, and for the two 

neighbors of -1andof +1. In Table 3 and Table 

4 we have reported the main results for Subject 

A, concerning the strongest thresholding choice 

λ=Mi in the NOI of -1, and the choice λ=4/5Mi 

in the NOI of +1. Analogously, Table 5 and 

Table 6 show the outputs for Subject B, where 

we have considered λ=1/2Mi for the NOI of -1, 

and λ=4/5Mi for the NOI of +1. The corre-

The example consider matrix S1(L) without a 
thresholding process. We remind the reader that the col-
ors of the pixels are relative to the presence of the asso-
ciated link throughout the epochs. For example the dark-
red pixel represents the link always active along the 29 
epochs. When the domain of analysis is 100%, i.e. matrix 
not thresholded, there is a number of colors, each repre-
senting a value ranging from 0 to 29. 
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sponding graphs are shown in Figure 5, Figure 

6, Figure 7, and Figure 8, where the thickness 

of a link connecting two nodes h and k relates 

to the following frequency-based weight for-

mula  
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being l, m, n the number of temporal slots in 

which the link h-k appears, respectively, in the 

graphs 5%,29Gi , 5%,23Gi  and 5%,14Gi ,   i {1,…,29}. 

The coefficients 1, 0.8, 0.5 relate to the corre-

sponding percentage of Mi which determine the 

second threshold. This provides weights con-

densing information coming from the highest 

value of λ that allows the link to appear. 

 

Example. Let us consider Subject B. In the 

analysis focusing on the neighborhood of +1, 

the link 17-25 does not appear in the graph 

5%,29Gi  (corresponding to λ=Mi) for any 

i {1,…,29}, so l=0. Differently, there exist 

four indices i {1,…,29} such  that 5%,23Gi  (cor-

responding to 80%Mi) contains the link, so 

m=4. Therefore,  the link 17-25 gets weight 

W17-25=4∙(0.4)=3.2. In Figure 8 the link is 

shown, together with all the other edges of the 

emergent graph G5%,23 , which allows an imme-

diate comparison among their thickness, and 

consequently among their importance in the 

performed analysis. 

 

3.5.1. Subject A: conclusions 
Table 3 and Table 4 provide an overview of the 

results concerning the horizontal analysis over 

the 29 epochs. 

The corresponding emerging graphs are shown 

in Figure 5 and in Figure 6, respectively. 

 
Table III. NOI of -1 for Subject A. 
Subject A, NOI of -1, λ=Mi 
LLink Cerebral Areas Occurences 

16-18 Right cuneus - Right inferior frontal 
gyrus, opercular part 14 

13-52 Left posterior cingulum - Left globus 
pallidus 13 

82-88 Right middle temporal gyrus - Right 
superior temporal gyrus 8 

74-82 Right rolandic operculum - Right 
middle temporal gyrus 6 

80-82 Right inferior temporal gyrus - Right 
middle temporal gyrus 5 

73-88 Left rolandic operculum - Right su-
perior temporal gyrus 4 

37-88 
Left Heschl’s gyrus or Left transverse 
temporal gyrus - Right superior 
temporal gyrus 

3 

74-89 Right rolandic operculum - Left 
thalamus 2 

13-37 
Left posterior cingulum - Left 
Heschl’s gyrus or Left transverse 
temporal gyrus 

2 

9-39 
Left anterior cingulum - Right 
Heschl’s gyrus or Right transverse 
temporal gyrus 

1 

51-76 Left olfactory cortex - Right supple-
mentary motor area 1 

60-65 Right inferior parietal lobule - Left 
precentral gyrus 1 

73-74 Left rolandic operculum - Right 
rolandic operculum 1 

76-88 Right supplementary motor area - 
Right superior temporal gyrus 1 

Table IV: NOI of +1 for Subject A. 
Subject A, NOI of +1, λ=4/5Mi 
Link Cerebral Areas Occurences 

2-88 Right amygdala - Right superior 
temporal gyrus 

17 

85-88 Left superior temporal pole - Right 
superior temporal gyrus  14 

1-88 Left amygdala - Right superior tem-
poral gyrus  12 

88-36 Right superior temporal gyrus- Right 
fusiform gyrus 12 

88-83 Right superior temporal gyrus- Left 
middle temporal pole  4 

88-62 Right superior temporal gyrus- Right 
Superior parietal lobule  3 

88-3 Right superior temporal gyrus- Left 
Angular Gyrus 2 

88-33 Right superior temporal gyrus- Right 
superior frontal gyrus, orbital part  2 

88-50 Right superior temporal gyrus- Right 
superior occipital gyrus  2 

1-13 Left amygdala- Left Posterior cingu-
lum 1 

1-17 Left amygdala- Left inferior frontal 
gyrus, opercular part  1 

88-10 Right superior temporal gyrus- Right 
anterior cingulum 1 

88-18 Right superior temporal gyrus- Right 
inferior frontal gyrus, opercular part  1 

88-40 Right superior temporal gyrus- Right 
Hippocampus 1 

88-49 Right superior temporal gyrus- Left 
superior occipital gyrus  1 

88-57 Right superior temporal gyrus- Left 
paracentral lobule  1 

88-61 Right superior temporal gyrus- Left 
Superior parietal lobule  1 

88-81 Right superior temporal gyrus- Left 
middle temporal gyrus 1 

0.8
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3.5.2. Subject B: conclusions 
Table 5 and Table 6 provide an overview of the 

results concerning the horizontal analysis over 

the 29 epochs. 

The corresponding emerging graphs are shown 

in Figure 7 and in Figure 8, respectively. 

 
Table V: NOI of -1 for Subject B. 
Subject B, NOI of -1, λ=1/2Mi 
Link Cerebral Areas Occurences 

17-60 Left inferior frontal gyrus, opercular 
part - Right inferior parietal lobule  17 

17-20 Left inferior frontal gyrus, opercular 16 

part - Inferior frontal gyrus, orbital 
part 

17-21 
Left inferior frontal gyrus, opercular 
part - Left inferior frontal gyrus, 
triangular part  

15 

17-18 
Left inferior frontal gyrus, opercular 
part - Right inferior frontal gyrus, 
opercular part  

14 

17-52 Left inferior frontal gyrus, opercular 
part - Right olfactory cortex 9 

17-56 
Left inferior frontal gyrus, opercular 
part - Right parahippocampal 
gyrus 

6 

17-37 
Left inferior frontal gyrus, opercular 
part - Left Heschl’s gyrus (or Left 
transverse temporal gyrus ) 

5 

17-29 Left inferior frontal gyrus, opercular 
part - Left superior frontal gyrus 1 

21-18 
Left inferior frontal gyrus, triangular 
part - Right inferior frontal gyrus, 
opercular part  

1 

21-19 
Left inferior frontal gyrus, triangular 
part - Left inferior frontal gyrus, 
orbital part  

1 

60-30 Right inferior parietal lobule - Left 
medial frontal gyrus 1 

 
Table VI: NOI of +1 for Subject B.  
Subject B, NOI of +1, λ=4/5Mi 
LLink CCerebral Areas Occurences 

17-22 
Left inferior frontal gyrus, opercular 
part - Right inferior frontal gyrus, 
triangular part  

14 

17-26 
Left inferior frontal gyrus, opercular 
part - Right inferior frontal gyrus, 
triangular part  

7 

17-25 Left inferior frontal gyrus, opercular 
part - Left middle frontal gyrus 4 

17-23 
Left inferior frontal gyrus, opercular 
part - Left medial orbitofrontal cor-
tex  

2 

17-61 Left inferior frontal gyrus, opercular 
part - Left superior parietal lobule  2

17-65 Left inferior frontal gyrus, opercular 
part - Left precentral gyrus  2 

26-47 Left middle frontal gyrus, orbital 
part - Left middle occipital gyrus 2 

26-50 Left middle frontal gyrus, orbital 
part - Right superior occipital gyrus  2 

26-75 
Left middle frontal gyrus, orbital 
part - Left supplementary motor 
area 

2 

17-27 
Left inferior frontal gyrus, opercular 
part - Right middle frontal gyrus, 
orbital part  

1 

22-88 
Right inferior frontal gyrus, triangu-
lar part - Right superior temporal 
gyrus  

1 

26-36 Left middle frontal gyrus, orbital 
part - Right fusiform gyrus  1 

26-43 Left middle frontal gyrus, orbital 
part - Left lingual gyrus 1 

26-45 Left middle frontal gyrus, orbital 
part - Left inferior occipital gyrus  1 

26-46 Left middle frontal gyrus, orbital 1 

The graph G5%,29 for Subject A when the Pleasant 
phase is dominant on the Basal phase (NOI of -1).   

The graph G5%,23 for Subject A when the Basal 
phase dominates the Pleasant phase (NOI of +1). 
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part - Inferior occipital gyrus 

26-49 Left middle frontal gyrus, orbital 
part - Left superior occipital gyrus  1

26-78 Left middle frontal gyrus, orbital 
part - Right supramarginal gyrus  1 

26-84 Left middle frontal gyrus, orbital 
part - Right middle temporal pole  1 

26-86 Left middle frontal gyrus, orbital 
part - Right superior temporal pole  1 

26-88 
Left middle frontal gyrus, orbital 
part - Right superior temporal gy-
rus 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis and discussion of the re-
sults 

We are aware that an analysis on two subjects 

cannot lead to definitive conclusions. Actually, 

our application has been confined to two sub-

jects, just to show how the whole theoretical 

procedure must be implemented (and also be-

cause no other data were available), without 

pretending to infer general neurological results. 

However, as we have previously remarked, our 

two steps thresholding approach has been re-

cently tested on real fMRI data concerning a 

sample of 133 different right-handed subjects, 

of different sex and age, with the main purpose 

of investigating their functional connectivity 

changing over the lifespan during the resting 

state. Results have not been published yet, so 

we cannot give here deep details. However, we 

can provide a brief overview. Subjects have 

been grouped in 28 different age-dependent 

classes (corresponding to the different epochs 

of the present paper). To each group, a matrix 

has been associated, so obtaining a list of 28 

different matrices, which are the analogous of 

the previous Ci matrices (we recall that, in the 

resting state, no task s  is performed). Both the 

thresholding steps have been considered as out-

lined above. In particular, we have focused on 

the neighbor of +1, where the highest function-

al connectivity is registered. As a reference 

percentile we have assumed k=90, so consider-

ing %10p = of the highest data, and λ=0.5Mi. 

The resulting representative graphs perfectly 

agree with the available literature about the De-

fault Mode Network (DMN), and also provide 

some new interesting insights. For example we 

have found that, both in males and females, the 

precuneus plays a dominant role in DMN as 

speculated in [24], [57]. Moreover, our out-

comes showed that cingulate cortex, paracingu-

late gyrus and frontal pole act as important 

players. In some seminal papers [9], [27], [58] 

all the cited areas have been identified as the 

core of the DMN in humans. This seems to rep-

resent a further solid validation of our proposal. 

 

4.1. Discussion on two subjects’ analysis 
We wish to point out that, since our approach is 

data depending, the related results are also data 

depending, namely, they have a direct correla-

tion with the subjects contributing to the data-

bases, independently of their number. Of 

course, the higher the number of subjects, the 

The graph G5%,14 for Subject B when the Pleasant 
phase is dominant on the Basal phase (NOI of -1). 

The graph G5%,23 for Subject B when the Basal test 
dominates the Pleasant test (NOI of +1). 
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greater is the extendibility of the results to gen-

eral neurobiological rules. 

Keeping in mind this warning on generaliza-

tion, a few speculations on the outputs obtained 

from our acoustical analysis on the two subjects 

are worth to be outlined. 

In what follows, Subsection 4.1.1 and 4.1.2, we 

describe an analysis in terms of graph theoreti-

cal parameters (node degree, weight of the 

links, presence of cycles,...). To this purpose 

we focus on the most representative graphs for 

each subject, meaning that they are not neces-

sarily characterized by the same value of se-

cond threshold. Further, in Subsection 4.1.3, we 

try to detail a possible neurobiological explana-

tion of the outcomes. These show analogies, 

and also some differences between the two sub-

jects. Analogies denote that indeed, a similar 

functional behavior has been determined by the 

musical task. On the other hand the differences 

could lie in the gender, the age and the emo-

tional answers of the two volunteers.  

We recall that the neighbor of -1 corresponds to 

the links mainly stimulated, with respect to the 

Basal phase (to be interpreted as the baseline), 

from the musical test. Conversely, the neighbor 

of +1 matches links that are “less sensitive” to 

the test. 

 

4.1.1. Graph Theoretical analysis in the 
neighbor of -1 
The graph theoretical analysis shows the fol-

lowing results: 

 

Subject A. Representative graph: G5%,29. 

1. The average degree of the graph is 

d=1.529. Its floor and ceil approxima-

tions are d =1and d = 2 , respectively. 

2. Node 88 has degree deg(88)=4, so high-

er than the average. This suggests that 

the node could act as a hub. 

3. There is a cycle: 73-74-82-88-73. Note 

that the weights of the links making up 

the cycle range from 1 (the weight of 

the link 73-74) to 7 (the weight of the 

link 88-82) through 4 (the weight of 73-

88) and 5 (the weight of 74-82). 

4. The links with higher weight, which are 

called, from now on, the strongest links, 

are: 16-18 (14 times out of 29); 13-52 

(13); 82-88 (8). We remind the reader 

that the weight of a link represents its 

frequency throughout the 29 investigat-

ed epochs.  

5. The graph consists of four connected 

components. Four are trivial, since are 

just single edges, while the fifth is rich-

er. 

 

Subject B. Representative graph: G5%,14. 

1. The average degree of the graph is d=2, 

so that also d = d = 2 . 

2. Node17couldbeahub, since it has a high 

degree (8) in comparison to the average 

degree.  

3. There is a cycle, whose vertices are 

nodes 17, 18, 21. Interestingly, links 17-

18 and 17-21 have high weights, since 

they appear, respectively, 14 and 15 

times.  

4. The strongest links are: 17-60 (17 

times), 17-21  (15), and 17-18  (14).  

5. The graph is connected. 

 

Main analogies. 

1. Presence of possible hubs (nodes 17 and 

88, respectively). 

2. The hubs have precisely the same floor 

normalized degree, namely deg(v)/d = 4

for both v=17 and v=88. 

3. d = 2 . 

4. Presence of cycles. 

 

Main differences. 

1. The number of involved cerebral areas. 

2. The number of links contributing to the 

cycle. 

3. The connection of the graphs. 

 

4.1.2. Graph Theoretical analysis in the 
neighbor of +1 
Let us look at the analysis in the neighbor of 

+1, i.e. when the Basal test dominates on the 

Pleasant one. 

 

Subject A. Representative graph: G5%,23. 

1. The average degree of the graph is 
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d=1.895, so that d =1and d = 2 , respec-

tively. 

2. The temporal lobe, specifically the right 

superior temporal gyrus (node 88) is 

strongly suspected to be a hub, being 

deg(88)=16, a very high value if com-

pared to 1.895. 

3. There are no cycles. 

4. The strongest links are: 88-2 (17 out 

23); 88-85 (14); 88-1 (12); 88-36 (12). 

5. The graph is connected. 

 

Subject B. Representative graph: G5%,23. 

1. The average degree is d=2, so that 

d = d = 2 . 

2. Node 17 could be a hub, since it has a 

degree equal to 7. Node 26 is strongly 

believed to be a hub, its degree is 13. 

3. Nodes 17 and 26 are connected each 

other. Hence, due to their central role 

we can speculate that they form a rich-

club organization3. In addition, they are 

a sort of connector hubs. 

4. There is a cycle: 17-22-88-26-17. In 

such a cycle the links 17-22, 17-26  

have  a high weight. 

5. The strongest links are: 17-22; 17-25; 

17-26. 6. The graph is connected. 

 

Main analogies. 

1. Presence of strong hubs.  

2. Connection of the graphs. 

3. Significant correspondence of the in-

volved cerebral areas (see Subsection 

4.1.3).  

4. d = 2  
 

Main differences. 

1. The number of hubs. 

2. The floor normalized degree of the 

hubs.  

3. The presence of rich club organization. 

 

3 The rich club organization (RCO) is characterized by a ten-
dency for high-degree nodes to be more densely connected 
among themselves than nodes of a lower degree. This metrics 
provides important information, for example a high rich-club 
coefficient implies that the hubs are well connected, and glob-
al connectivity is resilient to any one hub being removed. 

We remind that Subject A is a male of 39, 

while Subject B is a female whose age is 27. 

Between males and females, there are differ-

ences, both in the structural and in the func-

tional connectivity. In addition, the human pri-

mary cortex is located in the region of trans-

verse gyrus of Heschl (HG) in the superior 

temporal plane. It is interesting to remark that it 

is possible to have more than one HG on one or 

both sides in approximately 20% of hemi-

spheres, and that the proportion of HG that is 

occupied by cytoarchitecturally defined primary 

cortex can vary between 20% and 80% 

(Frackowiak et al., 2004). These remarks help 

in understanding why the graphs for Subject A 

and Subject B are not identical. 

 

4.1.3. Possible neurobiological explana-
tions of the outcomes 
Before giving a few possible neurobiological 

explanations concerning the obtained output 

graphs, we guess it is useful to recall the main 

steps of the acoustical process. 

When a subject listens to music, or hears some-

one speaking, the brain must process the in-

coming sounds, which may depend on, or be 

affected by, other information, such as the tone, 

the frequencies, the presence of noise. The first 

activation is inside the ear, where sounds are 

converted to vibrations in the middle ear, and 

then to electrical impulses in the inner ear. The 

second step occurs at a neurobiological level, 

when the previous electrical impulses are relat-

ed to different cerebral areas for their interpre-

tation. Basically, we can select four major 

players in the acoustical process: the Acoustic 

Nerve, the Cochlear Nucleus, the Auditory Cor-

tex and, at a higher stage, the Prefrontal Cortex. 

As expected, we found nodes strongly involved 

in the processing of acoustical information, in 

particular 37 (left Heschl’s gyrus), 85 (left su-

perior temporal pole) and 88 (right superior 

temporal gyrus). These nodes are, in some way, 

related to, or even included in the Primary Au-

ditory Cortex. We remind the reader that the 

Primary Auditory Cortex is part of the Tem-

poral Lobe. Anatomically, such a cortex is lo-

cated in the Superior Temporal plane, within 

the Lateral Fissure, and comprising parts of 
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Heschl’s Gyrus and the Superior Temporal Gy-

rus, including planum polare and planum tem-

porale (roughly Brodmann areas 41, 42, and 

partially 22). Functionally, the Auditory cortex 

processes auditory information (both in humans 

and in animals). 

Nevertheless, in our outputs are also represent-

ed cerebral areas that are not directly related to 

the auditory process, for example, nodes 49, 50, 

52 and 60. 

We wish to detail the possible neurological ex-

planations, both in the neighbor of -1 and of +1. 

 

Neighbor of -1. 
By analyzing the outcomes shown in Table 3 

and Table 5, it is not surprising to find cerebral 

areas such as the left and the right inferior 

frontal gyrus, opercular part (respectively, 

nodes 17 and 18), the left and the right inferior 

frontal gyrus, triangular part (nodes 21 and 22), 

the left superior temporal lobe (node 85) and 

the right superior temporal gyrus (nodes and 

88). All of them, in some way, are related to the 

processing of auditory information. 

If we focus on the representative graphs, for 

Subject A and Subject B, in the neighbor of -1, 

we can see that both of them contain the fol-

lowing nodes: 18, 52 and 60. It is not a surprise 

to find node 18, which is directly involved in 

the acoustical process. Differently, the presence 

of nodes 52 and 60 is really interesting. Actual-

ly, node 52, the right olfactory cortex4, is relat-

ed to the olfactory process, while node 60, the 

inferior parietal lobule, is generally involved in 

the perception of emotions in facial stimuli. 

The occurrence of these nodes in the repre-

sentative graphs points out that the acoustical 

task induced, in both subjects, a functional ac-

tivation of the same sensorial areas, probably 

related to the emotional answers to the listened 

piece of music. 

Regarding the strongest links we note that, for 

Subject A, they are: 16-18, 13-52, 82-88, the 

last being directly involved in the acoustical 

process.  

For Subject B the strongest links concern the 

The olfactory cortex which includes the piriform cortex (poste-
rior orbitofrontal cortex), amygdala, olfactory tubercle, and par-
ahippocampal gyrus. 

frontal gyrus, 17-21, 17-60, and, in particular 

17-21 is supposed to be involved in the process 

of acoustical information at a higher stage. 

In conclusion, we can infer that, in the neighbor 

of -1, there is a statistical interaction between 

areas which are associated to the acoustical 

process with areas associated to sensorial stim-

uli. 

 

Neighbor of +1. 
If we consider Table 4 and Table 6, it is not 

surprising to find nodes that are not directly re-

lated to auditory functions, since, in this case, 

we are investigating cerebral regions that are 

under-stimulated with respect to the Basal con-

dition. These represent the left and the right 

amygdala (nodes 1 and 2), the left posterior 

cingulum (node 13), the left cuneus (node 16), 

the left globus pallidus (node 52), the right in-

ferior parietal lobule (node 60). All of them 

seem to be negatively involved in the change of 

the functional connectivity during the music 

task. A possible interesting explanation is that 

these areas are supposed to be functionally 

linked to emotions, memory, meditation (e.g. 

posterior cingulum), and consequently are not 

immediately stimulated in the elaboration of 

sounds. For example, the cuneus is involved in 

the basic visual processing, which are modulat-

ed by extra-retinal effects, like attention, work-

ing memory and reward expectation (see [4]). 

Also, it is known that the right amygdala plays 

a role in non-conscious processing of emotion, 

while the left amygdala is involved in the pro-

cessing of conscious emotion [34]. Finally, the 

inferior parietal lobule is involved in the per-

ception of emotion, in facial stimuli, and in the 

interpretation of sensory information (Radua et 

al., 2010). 

If we focus on the nodes shared by the repre-

sentative graph of Subject A and Subject B we 

can find: 17, 49, 50, 61, 88. 

Interestingly, nodes 49 (left superior occipital 

gyrus), 50 (right superior occipital gyrus) and 

61 (left superior parietal lobule), are, respec-

tively, important for the visual process (49 and 

50) and for the spatial orientation (61). In addi-

tion the (left) superior parietal lobule receives a 

great deal of visual input and it is involved with 
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other functions of the parietal lobe in general, 

such as two points spatial discrimination and 

goal-related activity. From an anatomical point 

of view, the superior parietal lobule plays a big 

role since it has major white matter pathway 

connections with several important areas such 

as the Cingulum, SLF I5. 

The presence of node 17 and of node 88, that, 

as detailed above, are indeed related to the 

acoustical process, can be explained by the 

structure of the output graphs. In fact, these 

nodes are connected with several other cerebral 

areas that appear as meaningful in the neighbor 

of +1, so that the occurrence of 17 and 88, ra-

ther than to acoustical reasons, should be relat-

ed to their role of hub in the involved brain 

network. 

In conclusion, in the neighbor of 1, the analysis 

shows that the network involved in the acousti-

cal process is dominated by other networks 

which involve areas unrelated to such a pro-

cess. The functional connectivity appears to be 

relaxed in cerebral areas which are not tradi-

tionally associated with acoustical processes, 

which agrees, despite of the small number of 

subjects undergoing the experiment, with what 

is known by the available literature (see for in-

stance Wilkins et al. (2014) and Wu et al. 

(2013)) 

 

 

Conclusions 

In this paper we proposed a general methodology 

for introducing thresholds in the analysis of neu-

robiological databases. Such a methodology could 

be applied to data of different nature such as 

M/EEG, fMRI and PET. 

We have proposed to favor a task-dependent ap-

proach to threshold selection, based on a statistic 

analysis of the distribution of the collected data. 

This is done by gathering together data coming 

from different tests in form of triangular matrices, 

5 The superior longitudinal fasciculus (SLF) is composed of 
four distinct components: SLF I, SLF II, SLF III, and arcuate 
fascicle (AF). In humans, these four components are bundled 
together although they are functionally separate. Notably, in 
non-human primates, the SLF and AF are anatomically sepa-
rate and have separate trajectories. 

and then by comparing all the possible pairs of 

matrices. One of the tests is assumed as a base-

line, with respect to which the second test is con-

sidered as one aims in looking for analogies, or 

for discrepancies, between the two conditions. In 

each case, a data-dependent thresholding proce-

dure is carried out by a two steps method, based 

on parameters p  and λ. The first one allows to 

select the width of the NOI. The second threshold 

provides a fraction of the data coming from the 

previously selected NOI, in order to extract the 

stronger meaningful links. As an output a graph is 

provided, that represents the neurological results 

of the performed test with respect to the baseline 

condition. The greater λ, the smaller is the num-

ber of extracted links, so that their importance in 

the neurobiological interpretation increases. We 

also suggest to investigate different values of λ, in 

order to show, for a same threshold p , representa-

tive graphs having increasing structural richness.  

We have applied the proposed methodology to 

real EEG data generated in acoustical experi-

ments, where we compared the changes in func-

tional connectivity from a Basal condition(which 

is essentially a resting state condition), to a Pleas-

ant condition, where the volunteers listened to 

music that they classified as pleasant. 

In our analysis we have considered three different 

representative values of λ, corresponding to cut 

off a link when its occurrence is below the 50%, 

80% and 100% of the maximum collected fre-

quency. We wish also to point out that this ap-

proach works independently of the values of Mi, 

so that we can provide meaningful representative 

graphs even when Mi is small. Differently, in a 

database independent thresholding procedure, low 

values of Mi could be discarded, which would 

prevent, since the beginning, the corresponding 

neurobiological analysis. 

We looked for links steadily different, namely, 

links whose values are always different through-

out the experiment duration. Therefore, we fo-

cused on the NOI concerning neighbors of -1 and 

of +1, finding out some natural outcomes, as well 

as some interesting unexpected results. 

A further acoustical analysis could be developed 

in a neighbor of 0, in order to investigate the links 

always equal throughout the temporal slots. 
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By repeating the task with a significant number of 

subjects it could be possible to reinforce and gen-

eralize the results provided by our analysis. 

Moreover, by varying the choices of the threshold 

parameters p  and λ, one could also investigate 

the existence of motifs (Sporns et al., 2004) or 

leading a clustering analysis to understand the 

existence of provincial, central hubs and modules 

(Crossley et al., 2014; Sporns, 2010; Sporns et al., 

2007; Van den Heuvel and Sporns, 2013). Such a 

methodology could be useful to highlight cerebral 

connections that generally are not expected, also 

in view of identifying possible regions responsi-

ble for psychiatric disorders (Bassett et al., 2008; 

Bassett and Bullmore, 2009; Fornito et al., 2012). 

In addition, our methodology can be applied both 

in case of a resting state, as well as when a task-

dependent experiment is considered. 

We emphasize that all the data processed, and the 

results obtained in the different slots are availa-

ble. To this, we invite everybody who might be 

interested to write to the corresponding author. 
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