Adaptive plasticity and recovery in preclinical models of stroke

Stefania Dalise, Fabrisia Ambrosio, Michel Modo


Post-stroke recovery relies on neurobiological changes that modify the organization and function of the brain under pathophysiological conditions. The changes can be adaptive (i.e. restoration of function) or maladaptive (i.e. worsening of function). Preclinical models of stroke exhibit adaptive plasticity that leads to a “spontaneous recovery” of functions. This recovery can be modulated through external factors, such as rehabilitation, pharmacology or other adjuvant strategies. Nevertheless, current interventions only result in a limited improvement of deficits and there is also potential for maladaptation. Hence, a better understanding of the mechanisms underlying recovery is essential for the design of more efficient and targeted treatment strategies. Here, we review the main features of adaptive plasticity that are thought to underlie the spontaneous and induced recovery of function in animal models of stroke. Within this context, therapeutic interventions, used in isolation or synergistically to modulate recovery, are discussed. It is hoped that a focus on neurobiological principles and their manipulation will enhance interventional strategies to maximize therapeutic benefit. To ensure translation of these interventions into a clinical setting, a close interaction between basic and applied research is required.


brain plasticity; stroke, recovery; physical therapy; pharmacology; neural stem cells; rehabilitation; regenerative medicine

Full Text:



Acler M., Fiaschi A., Manganotti P. Long-term levodopa administration in chronic stroke patients. A clinical and neurophysiologic single-blind placebo-controlled cross-over pilot study. Restor Neurol Neurosci, 27: 277-283, 2009.

Adkins D.L., Hsu J.E., Jones T.A. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol, 212: 14-28, 2008.

Adkins D.L. and Jones T.A. D-amphetamine enhances skilled reaching after ischemic cortical lesions in rats. Neurosci Lett, 380: 214-218, 2005.

Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec, 145: 573-591, 1963.

Ambrosio F., Wolf S.L., Delitto A., Fitzgerald G.K., Badylak S.F., Boninger M.L., Russell A.J. The emerging relationship between regenerative medicine and physical therapeutics. Phys Ther, 90: 1807-1814, 2010.

Astrup J., Siesjo B.K., Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke, 12: 723-725, 1981.

Bach-y-Rita P. Brain plasticity as a basis for recovery of function in humans. Neuropsychologia, 28: 547-554, 1990.

Bacigaluppi M., Pluchino S., Martino G., Kilic E., Hermann D.M. Neural stem/precursor cells for the treatment of ischemic stroke. J Neurol Sci, 265: 73-77, 2008.

Bath K.G., Mandairon N., Jing D., Rajagopal R., Kapoor R., Chen Z.Y., Khan T., Proenca C.C., Kraemer R., Cleland T.A., Hempstead B.L., Chao M.V., Lee F.S. Variant brain-derived neurotrophic factor (val66met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. J Neurosci, 28: 2383-2393, 2008.

Bergami M., Rimondini R., Santi S., Blum R., Gotz M., Canossa M. Deletion of trkb in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A, 105: 15570-15575, 2008.

Bertorelli R., Adami M., Di Santo E., Ghezzi P. Mk 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain. Neurosci Lett, 246: 41-44, 1998.

Betz A.L. and Coester H.C. Effect of steroids on edema and sodium uptake of the brain during focal ischemia in rats. Stroke, 21: 1199-1204, 1990.

Bible E., Chau D.Y., Alexander M.R., Price J., Shakesheff K.M., Modo M. The support of neural stem cells transplanted into stroke-induced brain cavities by plga particles. Biomaterials, 30: 2985-2994, 2009.

Biernaskie J. and Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci, 21: 5272-5280, 2001.

Biernaskie J., Szymanska A., Windle V., Corbett D. Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci, 21: 989-999, 2005.

Bliss T., Guzman R., Daadi M., Steinberg G.K. Cell transplantation therapy for stroke. Stroke, 38: 817-826, 2007.

Bolognini N., Pascual-Leone A., Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil, 6: 8, 2009.

Brock T.O. and O'Callaghan J.P. Quantitative changes in the synaptic vesicle proteins synapsin i and p38 and the astrocyte-specific protein glial fibrillary acidic protein are associated with chemical-induced injury to the rat central nervous system. J Neurosci, 7: 931-942, 1987.

Brown C.E., Boyd J.D., Murphy T.H. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab, 30: 783-791, 2010.

Brown C.E., Li P., Boyd J.D., Delaney K.R., Murphy T.H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci, 27: 4101-4109, 2007.

Brown C.E., Wong C., Murphy T.H. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke, 39: 1286-1291, 2008.

Bush T.G., Puvanachandra N., Horner C.H., Polito A., Ostenfeld T., Svendsen C.N., Mucke L., Johnson M.H., Sofroniew M.V. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron, 23: 297-308, 1999.

Carmichael S.T. Plasticity of cortical projections after stroke. Neuroscientist, 9: 64-75, 2003.

Carmichael S.T. Cellular and molecular mechanisms of neural repair after stroke: Making waves. Ann Neurol, 59: 735-742, 2006.

Carmichael S.T. and Chesselet M.F. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci, 22: 6062-6070, 2002.

Carmichael S.T., Tatsukawa K., Katsman D., Tsuyuguchi N., Kornblum H.I. Evolution of diaschisis in a focal stroke model. Stroke, 35: 758-763, 2004.

Carmichael S.T., Wei L., Rovainen C.M., Woolsey T.A. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis, 8: 910-922, 2001.

Caroni P. and Schwab M.E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol, 106: 1281-1288, 1988.

Carrera E. and Tononi G. Diaschisis: Past, present, future. Brain, 2014.

Castro-Alamancos M.A. and Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience, 68: 793-805, 1995.

Chen J., Li Y., Wang L., Zhang Z., Lu D., Lu M., Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32: 1005-1011, 2001.

Chen L.M., Qi H.X., Kaas J.H. Dynamic reorganization of digit representations in somatosensory cortex of nonhuman primates after spinal cord injury. J Neurosci, 32: 14649-14663, 2012.

Chen P., Goldberg D.E., Kolb B., Lanser M., Benowitz L.I. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A, 99: 9031-9036, 2002.

Chuckowree J.A., Dickson T.C., Vickers J.C. Intrinsic regenerative ability of mature cns neurons. Neuroscientist, 10: 280-285, 2004.

Clarkson A.N., Huang B.S., Macisaac S.E., Mody I., Carmichael S.T. Reducing excessive gaba-mediated tonic inhibition promotes functional recovery after stroke. Nature, 468: 305-309, 2010.

Coppell A.L., Pei Q., Zetterstrom T.S. Bi-phasic change in bdnf gene expression following antidepressant drug treatment. Neuropharmacology, 44: 903-910, 2003.

Cramer S.C. and Nudo R.J. Brain repair after stroke. 2010, New York : Cambridge University Press.

Cramer S.C., Sur M., Dobkin B.H., O'Brien C., Sanger T.D., Trojanowski J.Q., Rumsey J.M., Hicks R., Cameron J., Chen D., Chen W.G., Cohen L.G., deCharms C., Duffy C.J., Eden G.F., Fetz E.E., Filart R., Freund M., Grant S.J., Haber S., Kalivas P.W., Kolb B., Kramer A.F., Lynch M., Mayberg H.S., McQuillen P.S., Nitkin R., Pascual-Leone A., Reuter-Lorenz P., Schiff N., Sharma A., Shekim L., Stryker M., Sullivan E.V., Vinogradov S. Harnessing neuroplasticity for clinical applications. Brain, 134: 1591-1609, 2011.

Daadi M.M., Maag A.L., Steinberg G.K. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: Functional engraftment in experimental stroke model. PLoS One, 3: e1644, 2008.

Dancause N. Vicarious function of remote cortex following stroke: Recent evidence from human and animal studies. Neuroscientist, 12: 489-499, 2006.

Dancause N., Barbay S., Frost S.B., Plautz E.J., Chen D., Zoubina E.V., Stowe A.M., Nudo R.J. Extensive cortical rewiring after brain injury. J Neurosci, 25: 10167-10179, 2005.

Davies S.J., Goucher D.R., Doller C., Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci, 19: 5810-5822, 1999.

de Bilbao F., Arsenijevic D., Moll T., Garcia-Gabay I., Vallet P., Langhans W., Giannakopoulos P. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem, 110: 12-22, 2009.

Di Lazzaro V., Profice P., Pilato F., Dileone M., Oliviero A., Ziemann U. The effects of motor cortex rtms on corticospinal descending activity. Clin Neurophysiol, 121: 464-473, 2010.

Dijkhuizen R.M., Singhal A.B., Mandeville J.B., Wu O., Halpern E.F., Finklestein S.P., Rosen B.R., Lo E.H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: A functional magnetic resonance imaging study. J Neurosci, 23: 510-517, 2003.

Dimyan M.A. and Cohen L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol, 7: 76-85, 2011.

Ding Y., Li J., Lai Q., Rafols J.A., Luan X., Clark J., Diaz F.G. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion. Neuroscience, 123: 667-674, 2004.

Duman R.S., Nakagawa S., Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology, 25: 836-844, 2001.

Duncan P.W., Lai S.M., Keighley J. Defining post-stroke recovery: Implications for design and interpretation of drug trials. Neuropharmacology, 39: 835-841, 2000.

Ehrenreich H., Hasselblatt M., Dembowski C., Cepek L., Lewczuk P., Stiefel M., Rustenbeck H.H., Breiter N., Jacob S., Knerlich F., Bohn M., Poser W., Ruther E., Kochen M., Gefeller O., Gleiter C., Wessel T.C., De Ryck M., Itri L., Prange H., Cerami A., Brines M., Siren A.L. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med, 8: 495-505, 2002.

Ehrenreich H., Weissenborn K., Prange H., Schneider D., Weimar C., Wartenberg K., Schellinger P.D., Bohn M., Becker H., Wegrzyn M., Jahnig P., Herrmann M., Knauth M., Bahr M., Heide W., Wagner A., Schwab S., Reichmann H., Schwendemann G., Dengler R., Kastrup A., Bartels C. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke, 40: e647-656, 2009.

Fang P.C., Barbay S., Plautz E.J., Hoover E., Strittmatter S.M., Nudo R.J. Combination of nep 1-40 treatment and motor training enhances behavioral recovery after a focal cortical infarct in rats. Stroke, 41: 544-549, 2010.

Faulkner J.R., Herrmann J.E., Woo M.J., Tansey K.E., Doan N.B., Sofroniew M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci, 24: 2143-2155, 2004.

Fawcett J.W., Housden E., Smith-Thomas L., Meyer R.L. The growth of axons in three-dimensional astrocyte cultures. Dev Biol, 135: 449-458, 1989.

Fitzgerald J. and Fawcett J. Repair in the central nervous system. J Bone Joint Surg Br, 89: 1413-1420, 2007.

Foley N., Salter K., Teasell R. Specialized stroke services: A meta-analysis comparing three models of care. Cerebrovasc Dis, 23: 194-202, 2007.

Foscarin S., Rossi F., Carulli D. Influence of the environment on adult cns plasticity and repair. Cell Tissue Res, 349: 161-167, 2012.

Frost S.B., Barbay S., Friel K.M., Plautz E.J., Nudo R.J. Reorganization of remote cortical regions after ischemic brain injury: A potential substrate for stroke recovery. J Neurophysiol, 89: 3205-3214, 2003.

Gage F.H. and Temple S. Neural stem cells: Generating and regenerating the brain. Neuron, 80: 588-601, 2013.

Gao X. and Chen J. Conditional knockout of brain-derived neurotrophic factor in the hippocampus increases death of adult-born immature neurons following traumatic brain injury. J Neurotrauma, 26: 1325-1335, 2009.

Gao X., Smith G.M., Chen J. Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol, 215: 178-190, 2009.

Gauthier L.V., Taub E., Mark V.W., Perkins C., Uswatte G. Improvement after constraint-induced movement therapy is independent of infarct location in chronic stroke patients. Stroke, 40: 2468-2472, 2009.

Gherardini L., Gennaro M., Pizzorusso T. Perilesional treatment with chondroitinase abc and motor training promote functional recovery after stroke in rats. Cereb Cortex, 2013.

Gladstone D.J., Danells C.J., Armesto A., McIlroy W.E., Staines W.R., Graham S.J., Herrmann N., Szalai J.P., Black S.E. Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: A randomized, double-blind, placebo-controlled trial. Stroke, 37: 179-185, 2006.

Gleichman A.J. and Carmichael S.T. Astrocytic therapies for neuronal repair in stroke. Neurosci Lett, 565: 47-52, 2014.

Goldstein L.B. Amphetamine trials and tribulations. Stroke, 40: S133-135, 2009.

Goldstein L.B. and Davis J.N. Influence of lesion size and location on amphetamine-facilitated recovery of beam-walking in rats. Behav Neurosci, 104: 320-327, 1990.

Gou X., Wang Q., Yang Q., Xu L., Xiong L. Tat-nep1-40 as a novel therapeutic candidate for axonal regeneration and functional recovery after stroke. J Drug Target, 19: 86-95, 2011.

Gutierrez-Fernandez M., Rodriguez-Frutos B., Alvarez-Grech J., Vallejo-Cremades M.T., Exposito-Alcaide M., Merino J., Roda J.M., Diez-Tejedor E. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience, 175: 394-405, 2011.

Gutierrez-Fernandez M., Rodriguez-Frutos B., Ramos-Cejudo J., Teresa Vallejo-Cremades M., Fuentes B., Cerdan S., Diez-Tejedor E. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther, 4: 11, 2013.

Hagemann G., Redecker C., Neumann-Haefelin T., Freund H.J., Witte O.W. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol, 44: 255-258, 1998.

Hashioka S., Klegeris A., Monji A., Kato T., Sawada M., McGeer P.L.,

Kanba S. Antidepressants inhibit interferon-gamma-induced microglial production of il-6 and nitric oxide. Exp Neurol, 206: 33-42, 2007.

Hebb D.O. The organization of behavior; a neuropsychological theory. 1949, Wiley.

Imura T., Matsumoto M., Fukazawa T., Khalesi E., Sun Y., Takeda M., Uwatoko H., Nakata K., Tanimoto K., Kajiume T., Kawahara Y., Yuge L. Interactive effects of cell therapy and rehabilitation realize the full potential of neurogenesis in brain injury model. Neurosci Lett, 555: 73-78, 2013.

Irwin N., Li Y.M., O'Toole J.E., Benowitz L.I. Mst3b, a purine-sensitive ste20-like protein kinase, regulates axon outgrowth. Proc Natl Acad Sci U S A, 103: 18320-18325, 2006.

Jablonka J.A., Burnat K., Witte O.W., Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: Dynamics of the compensatory reorganization. Neuroscience, 165: 90-100, 2010.

Janssen H., Bernhardt J., Collier J.M., Sena E.S., McElduff P., Attia J., Pollack M., Howells D.W., Nilsson M., Calford M.B., Spratt N.J. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil Neural Repair, 24: 802-813, 2010.

Jenkins W.M. and Merzenich M.M. Reorganization of neocortical representations after brain injury: A neurophysiological model of the bases of recovery from stroke. Prog Brain Res, 71: 249-266, 1987.

Jiang T., Xu R.X., Zhang A.W., Di W., Xiao Z.J., Miao J.Y., Luo N., Fang Y.N. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction. Neuroscience, 226: 421-426, 2012.

Johansson B.B. Functional and cellular effects of environmental enrichment after experimental brain infarcts. Restor Neurol Neurosci, 22: 163-174, 2004.

Johansson B.B. Neurotrophic factors and transplants. pp. 141-166. In: Goldstein L.B. Restorative neurology: Advances in pharmacotherapy for recovery after stroke. Armonk, NY, Futura Publishing Co, 1998.

Johansson B.B. and Ohlsson A.L. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol, 139: 322-327, 1996.

Jolkkonen J., Puurunen K., Rantakomi S., Sirvio J., Haapalinna A., Sivenius J. Effects-of fluoxetine on sensorimotor and spatial learning deficits following focal cerebral ischemia in rats. Restor Neurol Neurosci, 17: 211-216, 2000.

Jones T.A., Chu C.J., Grande L.A., Gregory A.D. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci, 19: 10153-10163, 1999.

Jones T.A. and Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res, 581: 156-160, 1992.

Kaas J.H., Merzenich M.M., Killackey H.P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci, 6: 325-356, 1983.

Katsman D., Zheng J., Spinelli K., Carmichael S.T. Tissue microenvironments within functional cortical subdivisions adjacent to focal stroke. J Cereb Blood Flow Metab, 23: 997-1009, 2003.

Kawamata T., Dietrich W.D., Schallert T., Gotts J.E., Cocke R.R., Benowitz L.I., Finklestein S.P. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A, 94: 8179-8184, 1997.

Keiner S., Witte O.W., Redecker C. Immunocytochemical detection of newly generated neurons in the perilesional area of cortical infarcts after intraventricular application of brain-derived neurotrophic factor. J Neuropathol Exp Neurol, 68: 83-93, 2009.

Kilic E., Kilic U., Soliz J., Bassetti C.L., Gassmann M., Hermann D.M. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of erk-1/-2 and akt pathways. FASEB J, 19: 2026-2028, 2005.

Kim Y.R., Huang I.J., Lee S.R., Tejima E., Mandeville J.B., van Meer M.P., Dai G., Choi Y.W., Dijkhuizen R.M., Lo E.H., Rosen B.R. Measurements of bold/cbv ratio show altered fmri hemodynamics during stroke recovery in rats. J Cereb Blood Flow Metab, 25: 820-829, 2005.

Kirschenbaum B. and Goldman S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci U S A, 92: 210-214, 1995.

Kleim J.A. and Jones T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Lang Hear Res, 51: S225-239, 2008.

Kleim J.A., Lussnig E., Schwarz E.R., Comery T.A., Greenough W.T. Synaptogenesis and fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci, 16: 4529-4535, 1996.

Knieling M., Metz G.A., Antonow-Schlorke I., Witte O.W. Enriched environment promotes efficiency of compensatory movements after cerebral ischemia in rats. Neuroscience, 163: 759-769, 2009.

Kokaia Z. and Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 13: 127-132, 2003.

Kokaia Z. and Lindvall O. Stem cell repair of striatal ischemia. Prog Brain Res, 201: 35-53, 2012.

Kokaia Z., Zhao Q., Kokaia M., Elmer E., Metsis M., Smith M.L., Siesjo B.K., Lindvall O. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol, 136: 73-88, 1995.

Kolb B., Cote S., Ribeiro-da-Silva A., Cuello A.C. Nerve growth factor treatment prevents dendritic atrophy and promotes recovery of function after cortical injury. Neuroscience, 76: 1139-1151, 1997.

Kolb B. and Gibb R. Environmental enrichment and cortical injury: Behavioral and anatomical consequences of frontal cortex lesions. Cereb Cortex, 1: 189-198, 1991.

Komitova M., Mattsson B., Johansson B.B., Eriksson P.S. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke, 36: 1278-1282, 2005.

Komitova M., Perfilieva E., Mattsson B., Eriksson P.S., Johansson B.B. Enriched environment after focal cortical ischemia enhances the generation of astroglia and ng2 positive polydendrocytes in adult rat neocortex. Exp Neurol, 199: 113-121, 2006.

Kondziolka D., Steinberg G.K., Wechsler L., Meltzer C.C., Elder E., Gebel J., Decesare S., Jovin T., Zafonte R., Lebowitz J., Flickinger J.C., Tong D., Marks M.P., Jamieson C., Luu D., Bell-Stephens T., Teraoka J. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J Neurosurg, 103: 38-45, 2005.

Konishi Y., Chui D.H., Hirose H., Kunishita T., Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res, 609: 29-35, 1993.

Krakauer J.W., Carmichael S.T., Corbett D., Wittenberg G.F. Getting neurorehabilitation right: What can be learned from animal models? Neurorehabilitation and Neural Repair, 26: 923-931, 2012.

Kuric E. and Ruscher K. Reduction of rat brain cd8(+) t-cells by levodopa/benserazide treatment after experimental stroke. Eur J Neurosci, 40: 2463-2470, 2014.

Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C., Granton J., Stewart D.J. Safety of cell therapy with mesenchymal stromal cells (safecell): A systematic review and meta-analysis of clinical trials. PLoS One, 7: e47559, 2012.

Lee D.H., Lee J.Y., Oh B.M., Phi J.H., Kim S.K., Bang M.S., Kim S.U., Wang K.C. Functional recovery after injury of motor cortex in rats: Effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection. Childs Nerv Syst, 29: 403-411, 2013.

Lee J.S., Hong J.M., Moon G.J., Lee P.H., Ahn Y.H., Bang O.Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28: 1099-1106, 2010.

Lee M.C., Mastri A.R., Waltz A.G., Loewenson R.B. Ineffectiveness of dexamethasone for treatment of experimental cerebral infarction. Stroke, 5: 216-218, 1974.

Lee S.T., Chu K., Jung K.H., Kim S.J., Kim D.H., Kang K.M., Hong N.H., Kim J.H., Ban J.J., Park H.K., Kim S.U., Park C.G., Lee S.K., Kim M., Roh J.K. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain, 131: 616-629, 2008.

Li P. and Murphy T.H. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. J Neurosci, 28: 11970-11979, 2008.

Li Y., Jiang N., Powers C., Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin d1 immunoreactivity after focal cerebral ischemia in rats. Stroke, 29: 1972-1980; discussion 1980-1971, 1998.

Li Y., Lu Z., Keogh C.L., Yu S.P., Wei L. Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab, 27: 1043-1054, 2007.

Li Y., Luikart B.W., Birnbaum S., Chen J., Kwon C.H., Kernie S.G., Bassel-Duby R., Parada L.F. Trkb regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron, 59: 399-412, 2008.

Liberto C.M., Albrecht P.J., Herx L.M., Yong V.W., Levison S.W. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem, 89: 1092-1100, 2004.

Lindvall O., Ernfors P., Bengzon J., Kokaia Z., Smith M.L., Siesjo B.K., Persson H. Differential regulation of mrnas for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A, 89: 648-652, 1992.

Liu Y.P., Seckin H., Izci Y., Du Z.W., Yan Y.P., Baskaya M.K. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 29: 780-791, 2009.

Loubinoux I., Carel C., Pariente J., Dechaumont S., Albucher J.F., Marque P., Manelfe C., Chollet F. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage, 20: 2166-2180, 2003.

Lu P., Jones L.L., Snyder E.Y., Tuszynski M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol, 181: 115-129, 2003.

Macias M. Injury induced dendritic plasticity in the mature central nervous system. Acta Neurobiol Exp (Wars), 68: 334-346, 2008.

Majewska A.K., Newton J.R., Sur M. Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci, 26: 3021-3029, 2006.

Malberg J.E., Eisch A.J., Nestler E.J., Duman R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20: 9104-9110, 2000.

Mang C.S., Campbell K.L., Ross C.J., Boyd L.A. Promoting neuroplasticity for motor rehabilitation after stroke: Considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther, 93: 1707-1716, 2013.

Mark V.W., Taub E., Morris D.M. Neuroplasticity and constraint-induced movement therapy. Eura Medicophys, 42: 269-284, 2006.

Martin L.J., Zurek A.A., MacDonald J.F., Roder J.C., Jackson M.F., Orser B.A. Alpha5gabaa receptor activity sets the threshold for long-term potentiation and constrains hippocampus-dependent memory. J Neurosci, 30: 5269-5282, 2010.

Martinsson L., Hardemark H., Eksborg S. Amphetamines for improving recovery after stroke. Cochrane Database Syst Rev, CD002090, 2007.

Matsumori Y., Hong S.M., Fan Y., Kayama T., Hsu C.Y., Weinstein P.R., Liu J. Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia. Neurobiol Dis, 22: 187-198, 2006.

McKay R. Stem cells in the central nervous system. Science, 276: 66-71, 1997.

McKeon R.J., Jurynec M.J., Buck C.R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic cns glial scar. J Neurosci, 19: 10778-10788, 1999.

McKeon R.J., Schreiber R.C., Rudge J.S., Silver J. Reduction of neurite outgrowth in a model of glial scarring following cns injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci, 11: 3398-3411, 1991.

Merzenich M. Soft-wired: How the new science of brain plasticity can change your life. 2013, Parnassus Publishing.

Merzenich M.M., Kaas J.H., Wall J., Nelson R.J., Sur M., Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience, 8: 33-55, 1983.

Minnerup J., Heidrich J., Wellmann J., Rogalewski A., Schneider A., Schabitz W.R. Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke, 39: 1855-1861, 2008.

Mizuno M., Yamada K., Olariu A., Nawa H., Nabeshima T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci, 20: 7116-7121, 2000.

Modo M., Ambrosio F., Friedlander R.M., Badylak S.F., Wechsler L.R. Bioengineering solutions for neural repair and recovery in stroke. Curr Opin Neurol, 26: 626-631, 2013.

Mostany R., Chowdhury T.G., Johnston D.G., Portonovo S.A., Carmichael S.T., Portera-Cailliau C. Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex. J Neurosci, 30: 14116-14126, 2010.

Muller H.D., Hanumanthiah K.M., Diederich K., Schwab S., Schabitz W.R., Sommer C. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke, 39: 1012-1021, 2008.

Murphy T.H. and Corbett D. Plasticity during stroke recovery: From synapse to behaviour. Nat Rev Neurosci, 10: 861-872, 2009.

Nithianantharajah J. and Hannan A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci, 7: 697-709, 2006.

Nitsche M.A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci, 15: 619-626, 2003.

Norris J.W. Steroids may have a role in stroke therapy. Stroke, 35: 228-229, 2004.

Nudo R.J., Wise B.M., SiFuentes F., Milliken G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272: 1791-1794, 1996.

Nygren J. and Wieloch T. Enriched environment enhances recovery of motor function after focal ischemia in mice, and downregulates the transcription factor ngfi-a. J Cereb Blood Flow Metab, 25: 1625-1633, 2005.

Ohlsson A.L. and Johansson B.B. Environment influences functional outcome of cerebral infarction in rats. Stroke, 26: 644-649, 1995.

Onda T., Honmou O., Harada K., Houkin K., Hamada H., Kocsis J.D. Therapeutic benefits by human mesenchymal stem cells (hmscs) and ang-1 gene-modified hmscs after cerebral ischemia. J Cereb Blood Flow Metab, 28: 329-340, 2008.

Papadopoulos C.M., Tsai S.Y., Alsbiei T., O'Brien T.E., Schwab M.E., Kartje G.L. Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and in-1 antibody treatment in the adult rat. Ann Neurol, 51: 433-441, 2002.

Papadopoulos C.M., Tsai S.Y., Cheatwood J.L., Bollnow M.R., Kolb B.E., Schwab M.E., Kartje G.L. Dendritic plasticity in the adult rat following middle cerebral artery occlusion and nogo-a neutralization. Cereb Cortex, 16: 529-536, 2006.

Parent J.M., Vexler Z.S., Gong C., Derugin N., Ferriero D.M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol, 52: 802-813, 2002.

Pearson-Fuhrhop K.M. and Cramer S.C. Genetic influences on neural plasticity. PM R, 2: S227-240, 2010.

Pernet V. and Schwab M.E. The role of nogo-a in axonal plasticity, regrowth and repair. Cell Tissue Res, 349: 97-104, 2012.

Pinnock S.B., Blake A.M., Platt N.J., Herbert J. The roles of bdnf, pcreb and wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine. PLoS One, 5: e13652, 2010.

Platz T., Kim I.H., Engel U., Pinkowski C., Eickhof C., Kutzner M. Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: Interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor Neurol Neurosci, 23: 271-280, 2005.

Ploughman M., Windle V., MacLellan C.L., White N., Dore J.J., Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke, 40: 1490-1495, 2009.

Poungvarin N. Steroids have no role in stroke therapy. Stroke, 35: 229-230, 2004.

Ramic M., Emerick A.J., Bollnow M.R., O'Brien T.E., Tsai S.Y., Kartje G.L. Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res, 1111: 176-186, 2006.

Ramón y Cajal S. Degeneration & regeneration of the nervous system. 1959, Hafner Pub. Co.

Reitmeir R., Kilic E., Kilic U., Bacigaluppi M., ElAli A., Salani G., Pluchino S., Gassmann M., Hermann D.M. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain, 134: 84-99, 2011.

Restemeyer C., Weiller C., Liepert J. No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restor Neurol Neurosci, 25: 143-150, 2007.

Risher W.C., Ard D., Yuan J., Kirov S.A. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. J Neurosci, 30: 9859-9868, 2010.

Ruscher K., Kuric E., Wieloch T. Levodopa treatment improves functional recovery after experimental stroke. Stroke, 43: 507-513, 2012.

Russo-Neustadt A., Ha T., Ramirez R., Kesslak J.P. Physical activity-antidepressant treatment combination: Impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res, 120: 87-95, 2001.

Russo-Neustadt A.A., Beard R.C., Huang Y.M., Cotman C.W. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience, 101: 305-312, 2000.

Sanberg P.R., Eve D.J., Metcalf C., Borlongan C.V. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res, 201: 99-117, 2012.

Sandercock P.A. and Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev, CD000064, 2011.

Sargin D., Friedrichs H., El-Kordi A., Ehrenreich H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: Comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol, 24: 573-594, 2010.

Schabitz W.R., Berger C., Kollmar R., Seitz M., Tanay E., Kiessling M., Schwab S., Sommer C. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke, 35: 992-997, 2004.

Schabitz W.R., Sommer C., Zoder W., Kiessling M., Schwaninger M., Schwab S. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates bax and bcl-2 expression after temporary focal cerebral ischemia. Stroke, 31: 2212-2217, 2000.

Schabitz W.R., Steigleder T., Cooper-Kuhn C.M., Schwab S., Sommer C., Schneider A., Kuhn H.G. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke, 38: 2165-2172, 2007.

Scheidtmann K., Fries W., Muller F., Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: A prospective, randomised, double-blind study. Lancet, 358: 787-790, 2001.

Schneider A., Rogalewski A., Wafzig O., Kirsch F., Gretz N., Kruger C., Diederich K., Pitzer C., Laage R., Plaas C., Vogt G., Minnerup J., Schabitz W.R. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. Exp Transl Stroke Med, 6: 3, 2014.

Schwab M.E. Nogo and axon regeneration. Curr Opin Neurobiol, 14: 118-124, 2004.

Seitz R.J., Azari N.P., Knorr U., Binkofski F., Herzog H., Freund H.J. The role of diaschisis in stroke recovery. Stroke, 30: 1844-1850, 1999.

Seymour A.B., Andrews E.M., Tsai S.Y., Markus T.M., Bollnow M.R., Brenneman M.M., O'Brien T.E., Castro A.J., Schwab M.E., Kartje G.L. Delayed treatment with monoclonal antibody in-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab, 25: 1366-1375, 2005.

Shyu W.C., Lin S.Z., Yang H.I., Tzeng Y.S., Pang C.Y., Yen P.S., Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 110: 1847-1854, 2004.

Siren A.L., Fratelli M., Brines M., Goemans C., Casagrande S., Lewczuk P., Keenan S., Gleiter C., Pasquali C., Capobianco A., Mennini T., Heumann R., Cerami A., Ehrenreich H., Ghezzi P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A, 98: 4044-4049, 2001.

Slevin M., Kumar P., Gaffney J., Kumar S., Krupinski J. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (Lond), 111: 171-183, 2006.

Smith E.J., Stroemer R.P., Gorenkova N., Nakajima M., Crum W.R., Tang E., Stevanato L., Sinden J.D., Modo M. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells, 30: 785-796, 2012.

Smith M.E., van der Maesen K., Somera F.P. Macrophage and microglial responses to cytokines in vitro: Phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res, 54: 68-78, 1998.

Sonde L. and Lokk J. Effects of amphetamine and/or l-dopa and physiotherapy after stroke - a blinded randomized study. Acta Neurol Scand, 115: 55-59, 2007.

Stroemer R.P., Kent T.A., Hulsebosch C.E. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke, 26: 2135-2144, 1995.

Stroemer R.P., Kent T.A., Hulsebosch C.E. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d-amphetamine therapy after neocortical infarction in rats. Stroke, 29: 2381-2393; discussion 2393-2385, 1998.

Sutton R.L., Hovda D.A., Feeney D.M. Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav Neurosci, 103: 837-841, 1989.

Tatarishvili J., Oki K., Monni E., Koch P., Memanishvili T., Buga A.M., Verma V., Popa-Wagner A., Brustle O., Lindvall O., Kokaia Z. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor Neurol Neurosci, 32: 547-558, 2014.

Taub E., Uswatte G., King D.K., Morris D., Crago J.E., Chatterjee A. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke, 37: 1045-1049, 2006.

Thored P., Arvidsson A., Cacci E., Ahlenius H., Kallur T., Darsalia V., Ekdahl C.T., Kokaia Z., Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells, 24: 739-747, 2006.

Tiebosch I.A., Crielaard B.J., Bouts M.J., Zwartbol R., Salas-Perdomo A., Lammers T., Planas A.M., Storm G., Dijkhuizen R.M. Combined treatment with recombinant tissue plasminogen activator and dexamethasone phosphate-containing liposomes improves neurological outcome and restricts lesion progression after embolic stroke in rats. J Neurochem, 123 Suppl 2: 65-74, 2012.

Tsai P.T., Ohab J.J., Kertesz N., Groszer M., Matter C., Gao J., Liu X., Wu H., Carmichael S.T. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci, 26: 1269-1274, 2006.

Tsai S.Y., Markus T.M., Andrews E.M., Cheatwood J.L., Emerick A.J., Mir A.K., Schwab M.E., Kartje G.L. Intrathecal treatment with anti-nogo-a antibody improves functional recovery in adult rats after stroke. Exp Brain Res, 182: 261-266, 2007.

Tsai S.Y., Papadopoulos C.M., Schwab M.E., Kartje G.L. Delayed anti-nogo-a therapy improves function after chronic stroke in adult rats. Stroke, 42: 186-190, 2011.

van Velthoven C.T., Kavelaars A., van Bel F., Heijnen C.J. Regeneration of the ischemic brain by engineered stem cells: Fuelling endogenous repair processes. Brain Res Rev, 61: 1-13, 2009.

Wall J.T., Xu J., Wang X. Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Brain Res Rev, 39: 181-215, 2002.

Wang H.Y., Crupi D., Liu J., Stucky A., Cruciata G., Di Rocco A., Friedman E., Quartarone A., Ghilardi M.F. Repetitive transcranial magnetic stimulation enhances bdnf-trkb signaling in both brain and lymphocyte. J Neurosci, 31: 11044-11054, 2011.

Wang L., Zhang Z., Wang Y., Zhang R., Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke, 35: 1732-1737, 2004.

Wang Y., Bontempi B., Hong S.M., Mehta K., Weinstein P.R., Abrams G.M., Liu J. A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats. J Cereb Blood Flow Metab, 28: 1936-1950, 2008.

Warraich Z. and Kleim J.A. Neural plasticity: The biological substrate for neurorehabilitation. PM R, 2: S208-219, 2010.

Whitlock J.R., Heynen A.J., Shuler M.G., Bear M.F. Learning induces long-term potentiation in the hippocampus. Science, 313: 1093-1097, 2006.

Wieloch T. and Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol, 16: 258-264, 2006.

Wiessner C., Bareyre F.M., Allegrini P.R., Mir A.K., Frentzel S., Zurini M., Schnell L., Oertle T., Schwab M.E. Anti-nogo-a antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab, 23: 154-165, 2003.

Will B., Galani R., Kelche C., Rosenzweig M.R. Recovery from brain injury in animals: Relative efficacy of environmental enrichment, physical exercise or formal training (1990-2002). Prog Neurobiol, 72: 167-182, 2004.

Windle V. and Corbett D. Fluoxetine and recovery of motor function after focal ischemia in rats. Brain Res, 1044: 25-32, 2005.

Wolf S.L., Winstein C.J., Miller J.P., Taub E., Uswatte G., Morris D., Giuliani C., Light K.E., Nichols-Larsen D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The excite randomized clinical trial. JAMA, 296: 2095-2104, 2006.

Xerri C. Plasticity of cortical maps: Multiple triggers for adaptive reorganization following brain damage and spinal cord injury. Neuroscientist, 18: 133-148, 2012.

Yamada K., Kinoshita A., Kohmura E., Sakaguchi T., Taguchi J., Kataoka K., Hayakawa T. Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction. J Cereb Blood Flow Metab, 11: 472-478, 1991.

Yang Y.R., Wang R.Y., Wang P.S. Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett, 339: 91-94, 2003.

Yoon K.J., Oh B.M., Kim D.Y. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tdcs) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res, 1452: 61-72, 2012.

Zai L., Ferrari C., Dice C., Subbaiah S., Havton L.A., Coppola G., Geschwind D., Irwin N., Huebner E., Strittmatter S.M., Benowitz L.I. Inosine augments the effects of a nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci, 31: 5977-5988, 2011.

Zechariah A., ElAli A., Hermann D.M. Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice. Stroke, 41: 1008-1012, 2010.

Zhang R.L., Zhang Z.G., Chopp M. Neurogenesis in the adult ischemic brain: Generation, migration, survival, and restorative therapy. Neuroscientist, 11: 408-416, 2005.

Zhang X., Mei Y., Liu C., Yu S. Effect of transcranial magnetic stimulation on the expression of c-fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct. J Huazhong Univ Sci Technolog Med Sci, 27: 415-418, 2007.

Zhao C.S., Puurunen K., Schallert T., Sivenius J., Jolkkonen J. Behavioral and histological effects of chronic antipsychotic and antidepressant drug treatment in aged rats with focal ischemic brain injury. Behav Brain Res, 158: 211-220, 2005.

Zhao S., Zhao M., Xiao T., Jolkkonen J., Zhao C. Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke, 44: 1698-1705, 2013.

Ziemann U., Meintzschel F., Korchounov A., Ilic T.V. Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair, 20: 243-251, 2006.

Zigova T., Pencea V., Wiegand S.J., Luskin M.B. Intraventricular administration of bdnf increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci, 11: 234-245, 1998.

Zoladz J.A. and Pilc A. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J Physiol Pharmacol, 61: 533-541, 2010.



  • There are currently no refbacks.