Serotonin modifies the spontaneous spiking activity of gracile nucleus neurons in rats: role of 5-HT1A and 5-HT2 receptors

C. Grasso, G. Li Volsi, M. Barresi


We tested the effects of microiontophoretic application of serotonin (5-HT) on the firing rate of neurons located in the gracile nucleus (GN) of rats. Application of 5-HT1A and 5-HT2 agonists and antagonists respectively mimicked/ modulated and blocked the effects produced by the amine, respectively. Among the tested neurons, 88.2% modified their background firing activity in the presence of 5-HT. Responsive neurons decreased their mean firing activity (MFA) in 56.7% of cases and increased it in the remaining 43.3%. To ascertain the specificity of the effects induced by 5-HT, we utilized 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and alpha-methyl-5-hydroxytryptamine (α-MET-5-HT), agonists for 5-HT1A and 5-HT2 receptors, respectively. The microiontophoresis of 8-OH-DPAT modified the background firing rate of all GN neurons (100% of tested neurons) mimicking the decrease of MFA evoked by 5-HT. The application of a-MET-5-HT modified the MFA in 76.9% of tested neurons, decreasing it in 61.5% of cases and increasing in the remaining 23.1%. The decrease of MFA induced by 8-OH-DPAT was antagonized by application of the 5-HT1A receptor antagonist N-[2-[-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY100635), while application of 5-HT2 receptor antagonist ketanserine tartrate (KET) antagonized only the increase of MFA induced by a-MET-5-HT. These results indicate that 5-HT is able to modulate the background firing activity of GN neurons by 5-HT1A and 5-HT2 receptors.


Gracile Nucleus; Serotonin; 5-HT1A receptors; 5-HT2 receptors; microiontophoresis; immunohistochemistry

Full Text:



Aghajanian G.K. and Marek G.J. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res., 825: 161-171, 1999.

Barnes N.M. and Sharp. T. A review of 5-HT receptors and their function. Neuropharmacology, 38: 1083-1152, 1999.

Barresi M., Li Volsi G., Licata F., Ciranna L. and Santangelo F. Effects of 5-hydroxytryptamine on the neuronal firing rate of bulbar reticular neurons. Arch. Ital. Biol., 143: 13-27, 2005.

Blomqvist A. and Broman J. Serotoninergic innervations of the dorsal column nuclei and its relation to cytoarchitectonic subdivisions: an immunohistochemical study in cats and monkeys (Aotustrivirgatus). J. Comp. Neurol., 327: 584-596, 1993.

Boothman L., Raley J., Denk F., Hirani E. and Sharp T. In vivo evidence that 5-HT2C receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Brit. J. Pharmacol., 149: 861-869, 2006.

Colpaert F.C. 5-HT1A receptor activation: new molecular and neuroadaptive mechanisms of pain relief. Curr. Opin. Invest. Dr., 7: 40-47, 2006.

Cornide-Petronio M.E., Anadon R., Barreiro-Iglesias A and Rodicio M.C. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression and expression in the central nervous system. Brain Struct. Funct., 218: 1317-1335, 2013.

Fonseca M.I., Ni Y.G., Dunning D.D. and Miledi R. Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Mol. Brain Res., 89: 11-19, 2001.

Gerhart K.D., Wilcox T.K., Chung J.M. and Willis W.D. Inhibition of nociceptive and non nociceptive responses of primate spinothalamic cells by stimulation in medial brain stem. J. Neurophysiol., 45: 121-136, 1981.

Gobert A., Lejeune F., Rivet J.M., Audinot V., Newman-Tancredi A. and Millan M.J. Modulation of the activity of central serotoninergic neurons by novel serotonin1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. J. Pharmacol. Exp. Ther., 273: 1032-1046. 1995.

Gosselin R.D., Bebber D. and Decosterd I. Upregulation of the GABA transporter GAT-1 in the gracile nucleus in the spared nerve injury model of neuropathic pain. Neurosci. Lett., 480: 132-137, 2010.

Grasso C., Li Volsi G., Licata F., Ciranna L. and Santangelo F. Aminergic control of neuronal firing rate in thalamic motor nuclei of the rat. Arch. Ital. Biol., 144: 173-196, 2006.

Hoyer D., Clarke D.E., Fozard J.R., Hartig P.R., Martin G.R., Mylecharane E.J., Saxena P.R. and Humphrey P.P. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev., 46: 157-203. 1994.

Jakus R., Graf M., Juhasz G., Gerber K., Levay G., Halasz P. and Bagdya G. 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike–wave discharges in a genetic rat model of absence epilepsy. Exp. Neurol., 184: 964-972, 2003.

Jiang Z.C., Qi W.J., Wang J.Y. and Luo F. Chronic administration of 5-HT1A receptor agonist relieves depression and depression-induced hypoalgesia. Scientific World Journal. eCollection 2014

Jundi A.S., Saadé N.E., Banna N.R. and Jabbur S.J. Modification of transmission in the cuneate nucleus by raphe and periaqueductal gray stimulation. Brain Res., 250: 349-352, 1982.

Kayser V., Elfassi I.E., Aubel B., Melfort M., Julius D., Gingrich J.A., Hamon M. and Bourgoin S. Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain, 130: 235-248, 2007.

Kristiansen K. and Dahl S.G. Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT2C receptor interactions. Eur. J. Pharmacol., 306: 195-210, 1996.

Kupers R., Frokjaer V.G., Naert A., Christensen R., Budtz-Joergensend E., Kehlet H. and Knudsen G.M. A PET [18F] altanserin study of 5-HT2A receptor binding in the human brain and responses to painful heat stimulation. Neuroimage, 44: 1001-1007, 2009.

Licata F., Li Volsi G., Maugeri G. and Santangelo F. Effects of 5-hydroxytryptamine on the firing rates of neurons of the lateral vestibular nucleus in the rat. Exp. Brain Res., 79: 293-298, 1990.

Licata F., Li Volsi G., Maugeri G., Ciranna L. and Santangelo F. Serotonin-evoked modifications of the neuronal firing rate in the superior vestibular nucleus: a microiontophoretic study in the rat. Neuroscience, 107: 215-220, 1993b.

Licata F., Li Volsi G., Maugeri G. and Santangelo F. Excitatory and inhibitory effects of 5-hydroxytryptamine on the firing rate of medial vestibular nucleus neurons in the rat. Neurosci. Lett., 154: 195-198, 1993a.

Licata F., Li Volsi G., Maugeri G. and Santangelo F. Neuronal responses to 5-hydroxytryptamine in the red nucleus of rats. Exp. Brain Res., 107: 215-220, 1995.

Lindstedt F., Lonsdorf T.B., Schalling M., Kosek E. and Ingvar M. Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS One, e17752, 2011.

Liu R., Jolas T. and Aghajanian G. Serotonin 5-HT receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res., 873: 34-45, 2000.

Mackowiak M., Chocyk A., Sanak M., Czyrak A., Fijal K. and Wedzony K. DOI, an agonist of 5-HT2A/2C serotonin receptor, alters the expression of cyclooxygenase-2 in the rat parietal cortex. J. Physiol. Pharmacol., 53: 395-407, 2002.

Marino J., Martinez L. and Canedo A. Sensorimotor integration at the dorsal column nuclei. News Physiol. Sci., 14: 231-237, 1999.

Martin L.P., Jackson D.M., Wallsten C. and Waszczak B.L. Electrophysiological comparison of 5-Hydroxytryptamine1A receptor antagonists on dorsal raphe cell firing. J. Pharmacol. Exp. Ther., 288: 820-826, 1999.

Martin P., Waters N., Schmidt C.J., Carlsson A. and Carlsson M.L. Rodent data and general hypothesis: antipsychotic action exerted through 5-HT2A receptor antagonism is dependent on increased serotoninergic tone. J. Neural. Transm., 105: 365-396, 1998.

Miki K., Iwata K., Tsuboi Y., Morimoto T., Kondo E., Dai Y., Ren K. and Noguchi K. Dorsal column-thalamic pathway is involved in thalamic hyperexcitability following peripheral nerve injury: a lesion study in rats with experimental mononeuropathy. Pain, 85: 263-271, 2000.

Millan M.J. Descending control of pain. Prog. Neurobiol., 66: 355–474, 2002.

Millan M.J., Bervoets K. and Colpaert F.C. 5-hydroxytryptamine (5-HT)1A receptors and the tail-flick response. I. 8-hydroxy-2-(di-n-propylamino) tetralin HBr-induced spontaneous tail-flicks in the rat as an in vivo model of 5-HT1A receptor-mediated activity. J. Pharmacol. Exp. Ther., 256: 973-982, 1991.

Millan M.J. Serotonin (5-HT) and pain: a reappraisal of its role in the light of receptor multiplicity. Seminar in Neuroscience, 7: 409-419, 1995.

Munoz A., Munoz M., Gonzalez A. and Ten Donkelaar H.J. Anuran dorsal column nucleus: organization, immunihistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis. J. Comp. Neurol., 363: 197-220, 1995.

Nunez A. and Buno W. In vitro electrophysiological properties of rat dorsal column nuclei neurons. Eur. J. Neurosci., 11: 1865-1876, 1999.

Paxinos G. and Watson C. The rat brain in stereotaxic coordinates. Academic Press, New York, 1997.

Pearson J.C. and Goldfinger M.D. The morphology and distribution of serotonin-like immunoreactive fibers in the cat dorsal column nuclei. Neurosci. Lett., 74: 125-131, 1987.

Pompeiano M., Palacios J.M. and Mengod G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci., 12: 440-453, 1992.

Porreca F., Ossipov M.H. and Gebhart G.F. Chronic pain and medullary descending facilitation. Trends Neurosci., 25: 319-325, 2002.

Qi H.X. and Kaas J.H. Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates. J. Comp. Neurol., 499: 183-217, 2006.

Sasaki M., Obata H., Kawahara K., Saito S. and Goto F. Peripheral 5-HT2A receptor antagonism attenuates primary thermal hyperalgesia and secondary mechanical allodynia after thermal injury in rats. Pain, 122: 130-136. 2006.

Soleimannejad E., Semnanian S., Fathollahi Y. and Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav. Brain. Res., 168: 221-225, 2006.

Stanford I.M., Kantaria M.A., Chahal H.S., Loucif K.C. and Wilson C.L. 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-H(4) and 5-HT(1A) receptors. Neuropharmacology, 49: 1228-1234, 2005.

Strata F., Coq J.O. and Kaas J.H. The chemo- and somatotopic architecture of the galaco cuneate and gracile nuclei. Neuroscience, 116: 831-850, 2003.

Yamamoto T. and Nozaki-Taguchi N. Role of spinal cyclooxygenase (COX)-2 on thermal hyperalgesia evoked by carageenan injection in the rat. Neuroreport., 8: 2179-2182, 1997.

Van Steenwinckel J., Brisorgueil M.J., Fischer J., Vergéa D., Gingrichc J.A., Bourgoinb S., Hamonb M., Bernarda R. and Conrath M. Role of spinal serotonin 5-HT2A receptor in 2′,3′-dideoxycytidine-induced neuropathic pain in the rat and the mouse. Pain, 137: 66-80, 2008.

Van Steenwinckela J., Nogheroa A., Thibaulta K., Brisorgueila M.J., Fischera J. and Conrath M. The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience, 61: 838-846, 2009.

Wang S., Zhang Q.J., Liu J., Wu Z.H., Ali U., Wang Y., Chen L. and Gui Z.H. The firing activity of pyramidal neurons in medial prefrontal cortex and their response to 5-hydroxytryptamine-1A receptor stimulation in a rat model of Parkinson's disease. Neuroscience, 162: 1091-1100, 2009a.

Wang S., Zhang Q.J., Liu J., Wu Z.H., Wang T., Gui Z.H., Chen L. and Wang Y. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT(1A) receptor stimulation in the rat. Neuroscience, 159: 850-861, 2009b.

Willcockson H.H., Carlton S.M. and Willis W.D. Input to the dorsal column nuclei (DCN) in the rat from nucleus paragigantocellularis lateralis (PGL) and nucleus raphe magnus (NRM). Anat. Rec., 211: (Suppl) 215A, 1985.

Willcockson H.H., Carlton S.M. and Willis W.D. Mapping study of serotoninergic input to diencephalic-projecting dorsal column neurons in the rat. J. Comp. Neurol., 261: 467-480, 1987.

Zhu X., Conklin D. and Eisenach J.C. Cyclooxygenase-1 in the spinal cord plays an important role in postoperative pain. Pain, 104: 15-23, 2003.



  • There are currently no refbacks.