Open Access Open Access  Restricted Access Subscription or Fee Access

The higher the basal vagal tone the better the motor imagery ability.

L. Sebastiani, F. Di Gruttola, O. Incognito, E. Menardo, E. L. Santarcangelo

Abstract


Purpose: A positive association between resting state vagal tone and performance of a few cognitive functions has been proposed. Aim of this study was to investigate the possible association between vagal tone and motor imagery (MI), as MI is based on high-level cognitive processes such as attention, working memory and inhibitory control. Methods: The experiment consisted of the execution of a motor sequence and of the MI of the same action in the kinesthetic and internal visual modality. Participants with high (High, N=15) and low (Low, N=16) vagal tone at rest, were characterized for imagery and executive functions abilities through the Motor imagery questionnaire and standard cognitive tests (Trail Making test A and B, Digit span and Corsi test). We studied as indices of vagal tone a few variables estimated from heart rate variability: the sroot mean square of successive heart-beat-intervals differences (RMSSD), the high frequency band (HF), the standard deviation 1 of Poincaré plot (SD1). As indices of MI ability we measured the isochrony between real and imagined movements and the reported vividness of imagery. Results: A significantly greater isochrony was observed in Highs than in Lows only for the kinesthetic modality of imagery. Isochrony was not predicted by trait imagery abilities and did not correlate with vividness reports. Also, a reduction of the vagal control, which is the typical autonomic correlate of MI, was observed during both imagery tasks only in Highs.

Conclusions: These findings indicate a cross-talk between the cardiovascular control and the proprioceptive representation of movement and reinforce the theory of bi-directional communication between heart and brain.


Keywords


vagal tone; heart rate variability; cognition; motor imagery; humans

Full Text:

PDF

References


Laborde S., Mosley E., Thayer J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Re-search - Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol., 8:213, 2017. doi: 10.3389/fpsyg.2017.00213.

Shaffer F. and Ginsberg J.P. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health. 5:258, 2017.

Thayer J. F. and Lane R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Af-fect. Disord., 61: 201–216, 2000. doi: 10. 1016/S0165-0327(00)00338-4.

Thayer J.F. and Lane R.D.Claude Bernard and the heart-brain connection: further elaboration of a model of neu-rovisceral integration. Neurosci. Biobehav. Re., 33: 81-8, 2009. doi: 10.1016/j.neubiorev.2008.08.004.

Thayer J. F., Ahs F., Fredrikson M., Sollers J. J., Wager T. D. A meta analysis of heart rate variability and neuroim-aging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev., 36: 747–756, 2012. doi: 10.1016/j.neubiorev. 2011.11.009.

Thayer J.F. and Brosschot J.F. Psychosomatics and psychopathology: looking up and down from the brain. Psy-choneuroendocrinology, 30: 1050-8, 2005.

Beauchaine T.P. Respiratory Sinus Arrhythmia: A Transdiagnostic Biomarker of Emotion Dysregulation and Psy-chopathology. Curr. Opin. Psychol., 3: 43-47, 2015.

Thayer J.F., Hansen A.L., Saus-Rose E., Johnsen B.H. Heart rate variability, prefrontal neural function, and cogni-tive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med., 37: 141-53, 2009. doi:10.1007/s12160-009-9101-z.

Porges S.W. The polyvagal perspective. Biol. Psychol. 74: 116–143, 2007. doi:10.1016/j.biopsycho.2006.06.009.

McCraty R.,and Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med., 4: 46–61, 2015. doi: 10.7453/gahmj.2014.073.

Stenfors C.U., Hanson L.M., Theorell T., Osika W.S. Executive Cognitive Functioning and Cardiovascular Auto-nomic Regulation in a Population-Based Sample of Working Adults. Front. Psychol., 7:1536, 2016.

Hansen, A.L., Johnsen B.H., Thayer J.F. Vagal influence on working memory and attention. Int. J. Psychophysiol., 48: 263–274, 2003. doi: 10.1016/S0167- 8760(03)00073-4

Colzato S. and Steenbergen L. High vagally mediated resting-state heart rate variability is associated with superi-or action cascading. Neuropsychologi,a 106: 1-6, 2017. doi: 10.1016/j.neuropsychologia.2017.08.030.

Barsalou L.W. Grounded cognition. Annu. Re.v Psychol., 59: 617–645, 2008

Munzert J., Lorey B., Zentgraf,K. Cognitive motor processes: the role of motor imagery in the study of motor rep-resentations. Brain Res. Rev., 60: 306-26, 2009.

Guillot A., Di Rienzo F,, Macintyre T,, Moran A,, Collet C, Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front. Hum. Neurosci., 6: 247, 2012. doi: 10.3389/fnhum.2012.00247.

Madan C. R. and Singhal A. Motor imagery and higher-level cognition: Four hurdles before research can sprint forward. Cogn, Processing, 13: 211–229, 2012.

Gabbard C., Lee J., Caçola P. Role of working memory in transformation of visual and motor representations for use in mental simulation. Cogn. Neurosci., 4: 210-216, 2013.

Decety J. and Grèzes J. Neural mechanisms subserving the perception of human actions. Trends Cogn. Sci., 3: 172-178 1999.

Malouin F., Belleville S., Richards C.L., Desrosiers J., Doyon J. Working memory and mental practice outcomes after stroke. Arch. Phys. Med. Rehabil., 85:177–183, 2004.

Lebon F., Rouffet D., Collet C., Guillot A. Modulation of EMG power spectrum frequency during motor imagery. Neurosci. Lett., 435: 181-185, 2008. doi:10.1016/j.neulet.2008.02.033.

Decety J., Jeannerod M., Germain M., Pastene J. Vegetative response during imagined movements is proportional to mental effort. Behav. Brain Sci., 42: 1–5, 1991.

Roth M., Decety J., Raybaudi M., Massarelli R., Delon-Martin C., Segebarth C., Morand S., Gemignami A., Decorps M., Jeannerod M. Possible involvement of primary motor cortex in mentally simulated movement: A functional magnetic resonance imaging study. Neuroreport, 7: 1280–1284, 1996.

Papadelis C., Kourtidou-Papadeli C., Bamidis P., Albani M. Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Brain Cogn., 64: 74-85, 2007.

Koenig J., Kemp A.H., Feeling N.R., Thayer J.F., Kaess . Resting state vagal tone in borderline personality disor-der: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 64:18-26, 2016. doi: 10.1016/j.pnpbp.2015.07.002.

Hill L.K. and Siebenbrock A. Are all measures created equal? Heart rate variability and respiration. Biomed. Sci. Instrum. 45: 71–76, 2009.

Kleiger R.E., Stein P.K., Bigger J.T. Jr. Heart rate variability: measurement and clinical utility. Ann. Noninvasive Electrocardiol., 10: 88-101, 2005.

Gomes R.L., Marques Vanderlei L.C., Garner D., Ramos Santana M.D., de Abreu L.C., Valenti V.E. Poincaré plot analysis of ultra-short-term heart rate variability during recovery from exercise in physically active men. J. Sports Med. Phy.s Fitnes,s 26, 2017. doi: 10.23736/S0022-4707.17.06922-5.

Collet C., Guillot A., Lebon F., Macintyre T., Moran A. Measuring Motor Imagery Using Psychometric, Behavior-al, and Psychophysiological Tools. Exerc. Sport Sci. Rev., 39: 85–92, 2011.

Williams S.E., Cumming J., Ntoumanis N., Nordin-Bates S.M., Ramsey Hall C. Further Validation and Develop-ment of the Movement Imagery Questionnaire. J. Sport Exerc. Psychol., 34: 621-646, 2012. doi:10.1123/jsep.34.5.621.

Benson H. The relaxation response: history, physiological basis and clinical usefulness. Acta Med. Scand. Suppl., 660: 231-7, 1982

Christoff K., Irving Z., Fox K.C., Spreng R.N., Andrews-Hanna J.R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci., 17: 718-731, 2016. doi:10.1038/nrn.2016.113.

Williams S.E., Guillot A., Rienzo F.D., Cumming J. Comparing self-report and mental chronometry measures of motor imagery ability. Eur. J. Sport Sci., 15: 703-711, 2015. doi:10.1080/17461391.2015.1051133.

Tarvainen M.P., Niskanen J.P., Lipponen J.A., Ranta-Aho P.O., Karjalainen P.A. Kubios HRV-heart rate variability analysis software. Comput. Methods Programs Biomed., 113:210-20, 2014 doi: 10.1016/j.cmpb.2013.07.024.

Bertsch K., Hagemann D., Naumann E., Schachinger H., Schulz A. Stability of heart rate variability indices reflect-ing parasympathetic activity. Psychophysiology, 49: 672–682, 2012. doi: 10.1111/j.1469-8986.2011.01341.x

Neijts M., Van Lien R., Kupper N., Boomsma D., Willemsen G., de Geus E.J. Heritability of cardiac vagal control in 24-h heart rate variability recordings: influence of ceiling effects at low heart rates. Psychophysiology, 51: 1023–36, 2014.

Santarcangelo E.L., Paoletti G., Balocchi R., Carli G., Morizzo C., Palombo C., Varanini M. Hypnotizability mod-ulates the cardiovascular correlates of subjective relaxation. Int. J. Clin. Exp. Hypn., 60: 383-96, 2012.

Santarcangelo E.L. New views of hypnotizability. Front. Behav. Neurosci. 8: 224, 2014.

Ibanez-Marcelo E., Campioni L., Phinyomark A., Petri G., Santarcangelo E.L. Topology highlights mesoscopic functional equivalence between imagery and perception. https://www.biorxiv.org/content/early/2018/02/20/268383, 2018.

Marchesotti S., Bassolino M., Serino A., Bleuler H., Blanke O. Quantifying the role of motor imagery in brain-machine interfaces. Sci. Rep., 6:24076, 2016. doi: 10.1038/srep24076.

Malouin F., Richards C.L., Durand A. Slowing of motor imagery after a right hemispheric stroke. Stroke Res. Treat., 2012:297217. doi: 10.1155/2012/297217.

Heremans E., Feys P., Nieuwboer A., Vercruysse S., Vandenberghe W., Sharma N., Helsen W. Motor imagery ability in patients with early- and mid-stage Parkinson disease. Neurorehabil.. Neural Repair, 25:168-77, 2011. doi: 10.1177/1545968310370750.

Mizuguchi N., Yamagishi T., Nakata H., Kanosue K. The effect of somatosensory input on motor imagery depends upon motor imagery capability. Front. Psychol., 6:104, 2015. doi: 10.3389/fpsyg.2015.00104.

Peixoto Pinto T., Mello Russo Ramos M., Lemos T., Domingues Vargas C., Imbiriba L.A. Is heart rate variability affected by distinct motor imagery strategies? Physiol. Behav., 177: 189-195, 2017. doi: 10.1016/j.physbeh.2017.05.004.

Movius H.L. and. Allen J.J. Cardiac Vagal Tone, defensiveness, and motivational style. Biol. Psychol., 68:147-62, 2005.

Friedman B.H. An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol.,74: 185-199, 2007.

Bassett D., Bear N., Nutt D., Hood S., Bassett S., Hans D. (2016) Reduced heart rate variability in remitted bipolar disorder and recurrent depression. Aust. N. Z. J. Psychiatry, 50: 793-804, 2016. doi: 10.1177/0004867416652734

Montaquila J.M., Trachik B.J., Bedwell J.S. Heart rate variability and vagal tone in schizophrenia: a review. J. Psychiatr. Res., 69: 57–66, 2015. doi: 10.1016/j.jpsychires.2015.07.025.

Luque-Casado A., Perales J.C., Cárdenas,D., Sanabria,D. Heart rate Variability and cognitive processing: the auto-nomic response to task demands. Biol. Psychol., 113: 8390, 2016. doi:10.1016/j.biopsycho2015.11.013

Ortega E. and Wang C.J.K. Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance. Appl. Psychophysiol. Biofeedback, 2017. doi: 10.1007/s10484-017-9386-9.

Woods D.L., Wyma J.M., Herron T.J., Yund E.W. The Effects of Aging, Malingering, and Traumatic Brain Injury on Computerized Trail-Making Test Performance. PLoS One, 10: e0124345, 2015. doi: 10.1371/journal.pone.0124345.

Prinsloo G.E., Rauch H.G., Derman W.E. A brief review and clinical application of heart rate variability biofeed-back in sports, exercise, and rehabilitation medicine. Phys. Sportsmed., 42: 88-99, 2014. doi: 10.3810/psm.2014.05.2061.

Ichikawa H., Kimura,J., Taniguchi S., Hara M., Fujisawa R., Shimizu H., Yamada T., Kawamura M. Motor imagery facilitates the spinal motor neurons without hemispheric asymmetry. J. Clin. Neurophysiol., 26:358-65, 2009.

Fujisawa R.., Kimura J., Taniguchi S., Ichikawa H., Hara M., Shimizu H., Iida H., Yamada T., Tani, T. Effect of voli-tional relaxation and motor imagery on F wave and MEP: do these tasks affect excitability of the spinal or cortical motor neurons? Clin. Neurophysiol., 122: 1405-10, 2011. doi: 10.1016/j.clinph.2010.12.041.

Kilintari, M., Narayana S., Babajani-Feremi A., Rezaie R., Papanicolaou A.C. Brain activation profiles during kin-esthetic and visual imagery: An fMRI study. Brain Res., 1646: 249-261, 2016.

Nunan D., Sandercock G.R., Brodie D.A. A quantitative systematic review of normalvalues for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol., 33: 1407-17, 2010. doi: 10.1111/j.1540-8159.2010.02841.x

Monaco M., Costa A., Caltagirone C., Carlesimo G.A. Forward and backward span for verbal and visuo-spatial da-ta:standardization and normative data from an Italian adult population. Neurol. Sci., 34:749–754, 2013. doi: 10.1007/s10072-012-1130-x

Giovagnoli A.R., Del Pesce M., Mascheroni S., Simoncelli M., Laiacona M., Capitani E. Trail making test: norma-tive values from 287 normal adult controls. Ital. J. Neuro.l Sci., 17, 305-309, 1996.




DOI: https://doi.org/10.12871/aib.v157i1.4688

Refbacks

  • There are currently no refbacks.