
Introduction

An increasing body of research indicates that “net-
work dysfunction” in the cortex – a disturbance in 
key, distributed forms of information processing – 
is the final common pathway mediating between a 
myriad of underlying incipient molecular and neuro-
nal pathologies and their varied clinical expression. 
At the same time, compensatory network dynamics 
should underlie clinical recovery, either through the 

natural history of a remitting disorder or through 
specific clinical interventions. Numerous lines of 
clinical evidence support the network basis of brain 
function, dysfunction, and repair. Classic studies 
have documented that the perturbation of a single 
brain region or node can affect the network as a 
whole (Hughlings Jackson, 1884; von Monakow, 
1911). Whether the manipulation of certain network 
parameters enables the restoration of brain function 
remains to be demonstrated. Our primary goal in this 
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article is to provide a firm theoretical basis for the 
idea that manipulation of network parameters may 
be useful for the recovery of brain function. Any 
successes in this domain stand to have an enormous 
impact to the field of neuroscience. The work dis-
cussed here summarizes our scientific objective and 
the network approach that we take as a group.
Large-scale brain network models refer to math-
ematical and computational models that have spa-
tiotemporal characteristics typically not encountered 
in the more traditional neural network literature. 
The network nodes represent brain regions, which 
incorporate a realistic computational model of their 
internal dynamics. The network links between brain 
regions represent interregional pathways that con-
vey neuronal signals, not instantaneously but with 
a finite transmission speed. The resultant time 
delay may often be negligible in intraregional net-
works, but not on larger scales involving multiple 
brain regions. Large-scale brain networks are well 
suited to describe the generation of spatiotemporal 
activity patterns observable in scalp topographies 
such as EEG and MEG, as well as the BOLD sig-
nal. With only a few notable exceptions discussed 
below, most extant brain network models do not 
explicitly use a biologically realistic connectiv-
ity matrix derived from empirical measurements of 
anatomical pathways, but make generic simplifying 
assumptions about the topology, density and range 
of the underlying large scale connectivity (Jirsa and 
Haken, 1996; Robinson et al., 1997; Breakspear et 
al., 2004). Model-driven multimodal integration has 
not been often attempted either, though some recent 
examples link neuronal activity (local field potential 
and firing rate of neural masses) to EEG/MEG (see 
for instance Jirsa et al., 2002; Valdes-Sosa et al., 
2009).
As a first step, a series of large-scale models has 
explored the spatiotemporal dynamics that arise on 
an anatomically based cortical model. The emphasis 
has been on intrinsic dynamics rather than those 
resulting from stimulus-evoked processing. A large 
body of empirical work has shown that spontane-
ous brain activity during wakeful rest is not purely 
random but rather displays detailed spatiotemporal 
structure, which includes the slow fluctuating spa-
tiotemporal patterns observed in the fMRI BOLD 
signal (Biswal et al., 1995) and the rapid fluctuations 
in electrical activity observable in EEG and MEG 

(e.g. Lehmann, 1971; Breakspear et al., 2004). 
Understanding how this activity emerges in the 
absence of an externally imposed task is not a trivial 
problem. In complex dynamical systems like the 
brain, the collective result of system-wide dynamics 
is difficult to predict even with near-perfect knowl-
edge of all major contributing factors (e.g., cortical-
cortical connectivity, local cortical dynamics, and 
intracortical connectivity). Across time scales usu-
ally considered in fMRI, the patterning of resting 
state networks appears largely dependent on ana-
tomical connectivity, although it is less constrained 
on the faster time scales of EEG. Both modeling 
and empirical work illustrate that anatomical con-
nections enable functional connections to emerge, 
but that there are a number of possible functional 
connectivity patterns that can be expressed around 
the same anatomical skeleton. Beyond connectivity, 
the dynamics of this global pattern are also shaped 
by other factors including the local dynamics of the 
brain regions, signal transmission delays, and noise. 
In the following, we review recent progress in each 
of these fields.

Quantitative analysis of structural and 
functional brain networks

Recent methodological advances, especially in the 
application of whole-brain noninvasive neuroimag-
ing approaches, have revealed the architecture of 
structural and functional brain networks in unprec-
edented detail. Diffusion imaging and tractography 
allow the comprehensive mapping of inter-regional 
pathways (Johansen-Berg and Behrens, 2009) and 
resting-state fMRI has demonstrated that spontane-
ous neural activity exhibits characteristic spatio-
temporal patterns (Fox and Raichle, 2007). A key 
issue for systems and cognitive neuroscience con-
cerns the relation between structural and functional 
networks – how does the anatomy of the brain shape 
and constrain dynamic interactions, and how do 
these interactions in turn mold the efficacy and 
strength of structural links? Moreover, what are the 
implications of these relationships for fluctuating 
cognitive processes, including sensory integration, 
attention and consciousness?
An important set of tools for the analysis of brain 
networks is provided by graph theory, the quantita-
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tive study of complex networks, composed of sets 
of nodes and edges (Bullmore and Sporns, 2009). 
Numerous graph metrics are available, roughly 
classifiable into measures that assess the degree of 
local ordering, global communication, and regional 
participation, which we refer to as measures of 
segregation, integration and influence, respectively 
(Rubinov and Sporns, 2010). Measures of segrega-
tion capture the degree to which the network’s nodes 
are clustered together, forming densely connected 
communities (modules) that are more weakly inter-
connected amongst each other. Community detec-
tion is of special relevance because structural and 
functional modules are often found to coincide with 
sets of brain regions and pathways that are function-
ally related – they often form known sensory or 
motor systems or jointly participate in a particular 
task domain (e.g. Dosenbach et al., 2007). Measures 
of global integration assess the capacity of the net-
work to exchange information. Integration is facili-
tated by a preponderance of short paths between 
pairs of nodes, which defines the global “commu-
nication distance” across the network. Integration 
can be measured by computing the average length 
of the shortest paths, or by deriving a closely related 
(essentially inverse) measure of global efficiency. 
Measures of influence quantify the centrality of indi-
vidual nodes (or edges), for example with respect to 
the overall exchange of information across the net-
work. Graph metrics have been shown to be robust 
and reliable across multiple imaging runs (Deuker 
et al., 2009), although their numerical values are 
greatly dependent on the partitioning scheme used 
to define nodes and edges (Zalesky et al., 2009). 
Additional advantages are that they can be applied to 
networks derived from anatomical as well as physi-
ological data, and can be compared across imaging 
modalities, individual subjects or clinical conditions.
The application of graph-theoretical methods to 
human brain data sets has already demonstrated that 
structural and functional networks have character-
istic, nonrandom attributes. Large-scale structural 
networks derived from DTI or DSI measurements 
exhibit a high propensity for clustering of nodes 
into structural modules, coupled with a high capac-
ity for global information flow, the hallmarks of a 
small-world organization (Hagmann et al., 2007, 
2008; Iturria-Medina et al., 2008; Gong et al., 2009). 
Modules are coupled via hub nodes, representing 

highly connected and highly central regions of the 
brain. These regions are located primarily within 
the parietal and frontal lobes of the cerebral cortex, 
and aggregated to form a prominent posteromedial 
core (Hagmann et al., 2008). Large-scale functional 
networks exhibit a similar organization, with several 
studies documenting functional clusters or modules 
(He et al., 2009), highly connected hub nodes 
(Buckner et al., 2009), and high efficiency (Bassett 
et al., 2009). Both structural and functional networks 
appear to be organized on several hierarchically 
nested scales (e.g. Meunier et al., 2009, Basset et al., 
2010), with modules that are composed of smaller 
modules, a type of organization that may have deep 
implications for the complexity of neural dynamics. 
While graph theoretical tools have now been widely 
employed in the human brain, it should be noted that 
the interpretation of graph metrics in the context of 
neuroscience sensitively depends on the choice of 
nodes and edges (Rubinov and Sporns, 2010). In 
general, graph metrics are more easily interpreted in 
structural networks, where potential causal paths of 
information exchange can be unambiguously identi-
fied, while path-based metrics may yield spurious 
results in functional networks, particularly those 
based on pair-wise cross-correlation (e.g. Muskulus 
et al., 2009).
An exciting prospect, and one that is directly rel-
evant to the main topic of this article, is the use of 
graph-based approaches to investigate the relation-
ship of structural to functional networks. This can 
be carried out within a neurocomputational model 
(Honey et al., 2007; Ghosh et al., 2008; Deco et 
al., 2009), where the structural coupling matrix is 
known and functional networks are derived from 
spontaneous or evoked dynamics, or by comparing 
imaging data that records structural and functional 
connectivity from the same set of human subjects 
(Honey et al., 2009). The availability of empirical 
data on both structural and functional connectivity 
allows an investigation of how much of the dynamic 
pattern of functional connectivity can be predicted 
from the underlying anatomy (Honey et al., 2010). 
Computational models of functional connectivity 
can reconstitute patterns of empirically derived 
functional couplings between brain regions to a sig-
nificant extent (Fig. 1). While these results argue for 
a major role of the anatomy in shaping functional 
interactions, they should be viewed as indicative of 
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a dynamic, not a static, relationship. Modeling stud-
ies, reviewed in more detail below, clearly demon-
strate that functional connectivity is constrained but 
not rigidly determined by the topology of anatomi-
cal linkages, and that functional connections form 
a rich repertoire of actual or potential couplings 
that greatly expands upon the relatively limited set 
of direct anatomical connections. The richness and 
diversity of functional connectivity is a major chal-
lenge for our understanding of structure-function 
relationships in the human brain.

Principles of multiscale modeling in 
brain networks

Empirical research motivates a computational 
approach that is mindful of the presence of repeating 
patterns of structural (Nunez, 1997) and topological 
(Meunier et al., 2009; Basset, 2010) principles of 
organization across a recursive hierarchy of spatial 
and temporal scales. In this regards, computational 
neuroscience may have much to benefit from the 

physical sciences, where multiscale dynamics have 
been identified and studied in a variety of complex 
systems – particularly in the field of “critical phe-
nomena” (Amit and Martin-Mayor, 1984).
One can identify three potential approaches to this 
challenge. The first approach parallels that taken in 
the physical sciences, by explicitly employing a uni-
fying multiscale framework (Breakspear and Stam, 
2005; Fusi et al., 2005; Kiebel et al., 2008). That is, 
a recursive set of scale-specific governing equations 
are specified, with a single underlying rule that links 
each scale iteratively with the next. In physical set-
tings, such as fluid turbulence and magnetization, 
this has been seamlessly achieved within an elegant 
mathematical framework called the “renormalization 
approach” whereby a single scaling operation, the 
renormalization group, can be identified and writ-
ten down (Wegner and Houghton, 1973). Critical 
phenomena, such as phase transitions and spatiotem-
poral chaos, occur when this scaling factor is close to 
unity – implying self-affinity amongst the tiers of the 
hierarchy. A phase transition towards macroscopic 
phenomena and large-scale correlations occurs rela-

Fig. 1. - (A) Scatter plot of functional connectivity between 66 cortical regions covering both cerebral hemispheres 
derived from a set of empirical observations of resting-state fMRI (“rsFC empirical”) and from a computational neu-
ral mass model (“rsFC nonlinear model”). The correlation between empirical and modeled functional connectivity 
is strong and highly significant (r = 0.70, p < 0.001). (B) Connection profiles for structural connectivity (“SC”) as 
well as empirical and modeled functional connectivity (“rsFC”) for a single region, the posterior cingulate cortex in 
the right hemisphere. Note the high correlation between all three profiles. Data replotted from Honey et al. (2009).
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tively rapidly (as in the onset of magnetization) if, 
under the action of a tuning parameter, the scaling 
factor passes from below to above unity quickly. 
Conversely near-criticality may robustly occur if the 
scaling factor is close to unity in a broad region of 
parameter space. This may be of special significance 
in neural systems, where evidence for criticality has 
been observed in in vitro tissue culture (Beggs and 
Plenz, 2003), as well as in vivo in primate corti-
cal activity (Petermann et al., 2009). Furthermore, 
evidence of strong large-scale correlations has been 
reported in human resting state brain rhythms (Freyer 
et al., 2009). Similarities to the formal renormaliza-
tion approach appear in multiscale neuronal models 
in both the spatial (Breakspear and Stam, 2005) 
and temporal (Fusi et al., 2005; Kiebel et al., 2008) 
domains although they differ in the degree to which 
they have been explicitly mapped onto neuronal 
substrates. For example, Fusi et al. (2005) appeal 
to synaptic processes occurring over different time 
scales, whereas Kiebel et al. (2008) propose a map-
ping between time scales and bottom-up anatomical 
substrates of the human cortex.
In complex physical systems (such as turbulence) 
spatiotemporal structures emerge dynamically from 
a substrate (such as water) that has no macroscopic 
structure in the absence of an energy flux. In con-
trast, different scales of the cortical hierarchy argu-
ably do have scale-specific rules of organization 
which exist, to varying degree, alongside the dynam-
ics which they support. This challenges the notion of 
a single multiscale framework for brain dynamics. A 
more pragmatic approach to the preceding one might 
be termed the “multiscale minded” approach and is 
embodied in many large-scale models of the human 
brain (Deco et al., 2008; Breakspear et al., 2010). 
By this, we mean modelling approaches that engage 
brain dynamics predominantly at one particular 
scale, but are nonetheless cognizant of processes at 
adjacent finer and/or coarser scales. An overarching 
principle is the technique of scaling up from small to 
large-scales not by brute force, but rather by dimen-
sion reduction techniques – such as the mean field 
approximation – that allows details at one scale to be 
embodied in fewer degrees of complexity at the next 
(for review, see Deco et al. 2008; Breakspear and 
Knock, 2008). In this way, processes at small scales 
– such as the time scales of dendritic filtering – can 
nonetheless enter as parameters at coarse scales (e.g. 

Robinson et al., 2004). Similarly, we advance the 
notion of “digging down” from coarse to finer scales 
by adding specific details – such as synaptic plastic-
ity – in order to test specific hypotheses – such as 
their contribution to dynamic neuronal assemblies 
in cortical-like ensembles (Rubinov et al., 2010). In 
this way, no particular scale is afforded a privileged 
status but rather multiple scales are seen to operate 
in a mutually interdependent manner. Moreover, 
depending on the exact requirements, computational 
loads for model implementation are relatively light, 
ranging from what could be deployed on a laptop 
computer, to something that may require several 
days on a modest server, allowing a rapid exchange 
between theory, experiment and hypothesis.
What are the implications if the multiscale nature of 
brain dynamics is not considered? The answer to this 
question may be found in the outcome of the various 
large projects that are premised in a third approach 
towards models of large-scale neuronal systems that 
may be termed the “brute force” approach – that 
is of building very large computational ensembles 
of spiking neurons. For example, the “Blue Brain” 
project aims to incorporate the detailed three-dimen-
sional morphology of individual neurons, their ion 
channel composition, the distributions and electrical 
properties of different neuronal classes and their 
relative proportions into detailed models of neuro-
nal microcircuitry (Markram, 2006). These detailed 
microcircuits are then considered the elementary 
building blocks of increasingly larger – but not 
coarser – scale models, as computational resources 
permit. The lack of an explicit multiscale architec-
ture entails several drawbacks. These models are 
extraordinarily difficult to implement, requiring 
advanced supercomputing, and their output can be 
difficult to interpret as the complexity of the model 
approaches the complexity of the brain itself.
These three approaches are outlined in Fig. 2. At this 
stage, we propose that the principles exemplified in 
the second approach represent the optimal trade-off 
between complexity and tractability. Crucially, their 
very abstraction – which some may regard as a com-
promise – provides the key mechanism for testing 
scale-specific hypotheses concerning neurobiological 
mechanisms. That is, the presence or absence of a 
particular detail in two otherwise identical models 
allows one to infer, using appropriate model compari-
son techniques (Friston et al., 2007) precisely whether 
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that mechanism is required for the observed phe-
nomena of interest. By employing such an approach, 
together with dimension reduction approaches, one 
can construct increasingly sophisticated – but not nec-
essarily more complicated – generative and hypothe-
sis-driven models for different data sets.

Spatiotemporal dynamics arising 
in brain networks

Brain networks are nonlinear spatiotemporal dynam-
ic systems that are characterized by the fact that they 
are comprised of cortical and subcortical networks. 

Fig. 2. - Schema of three approaches to dealing with the brain’s multiscale complexity: Approach I (multiscale frame-
work) incorporates intra- and inter-scale principles of organization over a hierarchical tier (j = 1, 2,…, N) of dynam-
ics. Approach II (multiscale-minded) takes a pragmatic approach to the dynamics of a particular scale, whilst also 
incorporating smaller scale processes (left) and also remaining aware of processes at smaller scales that may be lost 
during the mean field reduction (right). Forward models allow specific such models to be tested with model inversion 
schemes. Approach III (brute force) incorporates biologically validated information at the microscopic scale of the 
cell compartment and has the objective of large-scale simulation through massive parallel computation.
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Due to their spatial separation and finite transmis-
sion speeds, communication between brain regions 
includes time delays, which is in sharp contrast 
to communication in local networks where these 
delays are negligible. The coupling between any two 
regions in a brain network is a function of the con-
nection strength, their symmetry (or direction) and 
the time delay. These properties are referred to as 
the space-time structure of a given coupling where 
space refers to the coupling strengths and time to the 
associated delays. From previous work (Honey et al., 
2007; Ghosh et al., 2008a, 2008b; Deco et al., 2009, 
Cabral et al., unpublished) it appears that the space-
time structure of interregional couplings is the cru-
cial component of brain network dynamics, at least 
as far as resting state dynamics is concerned. When 
the intrinsic dynamics of a network node is manipu-
lated, the resulting brain network dynamics remains 
invariant under these changes, whereas manipula-
tions of the space-time structure of the couplings 
result in profound functional reorganization. For 
these reasons it is worthwhile to take a closer look 
at the effects of such manipulations, and to illustrate 
them with the help of some intuitive examples.
The simplest case of coupling with time delay 
involves a recurrent connection within a linearly 

stable neuronal population at rest. Mathematically 
this is expressed as

where x(t) is the time-dependent neural population 
activity, m the coupling strength and τ the time delay. 
When calculating the stability of the rest state of this 
population, stable and unstable regions are obtained 
as functions of m and τ as illustrated in Fig. 3. The 
stable region of the equilibrium is limited by two 
curves (the so-called critical lines), to the right by 
the vertical line at m = 1 which identifies the onset 
of a non-oscillatory instability, and to the left by the 
curved line, which identifies the onset of unstable 
oscillatory activity. The area in between these lines 
(traced out by three parallel lines) is the stable 
rest state of population activity, whereas dynamics 
outside the rest state are unstable. For this trivial 
example the space-time structure is just a point in 
the plane spanned by the coupling strength m and 
the time delay τ. Manipulation of the coupling’s 
space-time structure translates to navigation within 
this plane. If the time delay is negligible (τ = 0), then 
only variations along the horizontal line are possible 

Fig. 3. - Stability diagram of a single neuronal population with delayed self-coupling.
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and oscillatory behavior is completely non-existent. 
The rest state can be left only through a non-oscilla-
tory instability by increasing the coupling strength 
towards positive (excitatory) values.
The introduction of a time delay enriches the 
dynamic repertoire and allows for oscillations in the 
neighborhood of the left critical line for non-zero 
time delay, that is τ = τ

c
. The frequency ω of the 

oscillation is given by the coupling strength

and reflects a network property, specifically the cou-
pling’s space-time structure, rather than a property 
of the neuronal population.
The simplistic scenario of one neural population 
with a self-coupling may appear artificial. However, 
it is instructive since the same insights gained here 
are recovered in the case of two coupled neural pop-
ulations. Consider two neural populations described 
by their activities x

1
 and x

2
, respectively,

where the coupling strengths are denoted by m
12

 and
 

m
21

. The regions of stability and instability of the 
resting state are indicated in Fig. 4 as functions of 

the coupling strengths and the time delay τ. As in 
the previous situation of one population and self-
coupling, we find critical zones defining the borders 
between stable and unstable régimes. For τ = 0 the 
critical zone is a line indicating a non-oscillatory 
instability. When traversing this line from the stable 
to the unstable region by changing the coupling 
strengths, the neural population activity begins to 
grow exponentially, but does not oscillate. When the 
time delay is introduced, there are critical surfaces, 
indicated by SU in Fig. 4a, showing the critical 
values of the time delay τ = τ

c
, at which the neural 

population activity begins to increase in an oscilla-
tory fashion. The oscillation frequency is entirely 
determined by the network connectivity,

The critical surfaces in Fig. 4a are two topologically 
disconnected surfaces. A simpler and more compact 
representation of this situation is obtained when we 
calculate the eigenvalue of the connectivity matrix, λ 
= a + ib, and display the stability zones as a function 
of the real and imaginary part of the eigenvalue (see 
Fig. 4b). Here the more complicated situation with 
multiple critical surfaces in Fig. 4a translates into 
one critical surface that converges towards a central 
cylinder as the time delay τ increases. This manipula-

a b

Fig. 4. - Stability diagram of two delay-coupled neural populations. (a) The critical zones are plotted as functions of 
the coupling weights m12 and m21, and the time delay τ. (b) The critical zone is plotted as a function of the real and 
imaginary part of the eigenvalue of the connectivity matrix, as well as the time delay (see Jirsa and Ding, 2004).
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tion illustrates how a well-chosen transformation of 
the coupling’s space-time structure may simplify the 
system’s representation of stability zones.
In the previous paragraphs we have illustrated two 
of the crucial effects when dealing with the space-
time structure of couplings: First, the introduction 
of time delays into a network enriches the network 
dynamics and creates behaviors that are absent 
otherwise; second, when performing appropriate 
manipulations of the space-time structure, we can 
generate simplified representations of the network 
behavior. This latter insight is relevant in the con-
text of restoration of brain function. It suggests that 
an appropriate metric of the space-time structure 
of the coupling will allow us to perform informed 
manipulations thereof with the objective to navigate 
the brain network dynamics into desirable (that is 
healthy) parameter régimes.
A concern that arises in this context is the avail-
ability of structural connectivity data. The anatomi-
cal database Cocomac, developed by Rolf Kötter 
(Stephan et al., 2001; Kötter, 2004) is unique in 
the sense that it contains directed connectivity data, 
whereas due to the nature of the measurements DTI/
DSI provides us only with non-directed estimates 
of anatomical connections. Does the absence of 
directed connectivity in these latter matrices pose 
a problem for the investigations of the space-time 
structure of coupling? To put it differently, what 
constraints does the artificial symmetry in the con-
nectivity matrix as introduced by DTI/DSI impose? 
Knock et al. (2009) discussed the symmetry break-
ing effects of connectivity by means of a direct 
comparison of the functional organization between 
Cocomac and DSI-based connectivity data. In the 
following, we summarize the insights pertaining to 
the use of symmetric and asymmetric connectivity 
matrices. Reconsider the two neural populations 
with the coupling strengths m

12
 and

 
m

21
 as we dis-

cussed above, but now write m
12

 = m and m
12

 = m + ε. 
If ε = 0, then the connectivity matrix is symmetric, 
else it is asymmetric. The stability of the rest state of 
the network of two populations with no time delay is 
actually determined by the condition

When the degree of asymmetry is sufficiently small, 
ε << m, then this condition can be approximated by

which essentially expresses the fact that the critical 
surfaces defining the borders of the stability régimes 
remain intact but may be deformed by minor chang-
es on the scale of ε. This result generalizes to the 
situation in networks when one common time delay 
is considered (Jirsa and Ding, 2004). In other words, 
we can infer that the connectivity information pro-
vided by DTI/DSI will be sufficient to reconstruct 
the real brain network dynamics faithfully, if the 
degree of asymmetry expressed by ε is small. This 
situation will radically change though, if ε is large. 
The eigenvalues of the connectivity matrix read

which become imaginary for sufficiently large and 
negative ε and thus may introduce novel oscillatory 
phenomena that are entirely absent for symmetric 
connectivity. In particular the oscillation frequency 
will scale linearly with the square root of the degree 
of asymmetry,

In real world situations, the space-time structure of 
the couplings has a significantly higher degree of 
complexity (see Fig. 5), but the functional conse-
quences introduced by the presence of time delays 
and symmetry breaking are all present.
To more fully understand the rich spatiotemporal 
patterns of brain network dynamics, novel metrics 
operating directly on the space-time structure of 
the couplings are needed. The decomposition of 
the connectivity matrix into its eigenvectors and 
eigenvalues is just one means of manipulating these 
structures. Others, taking into account the complex-
ity of the connectivity, still need to be developed. 
The creation of such metrics and representations 
will allow us to better navigate the complex dynamic 
landscapes which contain the critical curves and sur-
faces separating stable and unstable types of behav-
iors. The active manipulation of these dynamic 
ingredients will be a key component to enable the 
development of novel routes of brain regeneration 
and repair.
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Noise in brain networks

Brain activity exhibits a high degree of variability in 
the course of resting and task-evoked activity, and 
both within and between individual behavioral trials. 
The challenging question is: are these fluctuations 
just an inevitable side-effect of the neuronal sub-
strate without playing any computational role or do 
they have functional relevance? Historically, brain 
functions were thought of as primarily involving 
feedforward information processing that generates 
behavior from the ground up by transformations of 
sensory, cognitive, and motor representations (Hubel 
and Wiesel, 1968; Barlow, 1990). In this framework, 
intrinsic spontaneous activity can only reflect noise. 
Alternatively, one can conceive the brain as not just 
a passive sensorimotor analyzer driven by sensory 
information, but as a system that actively gener-
ates and maintains predictions about forthcoming 
sensory stimuli, cognitive states and actions (Llinas 
et al., 1998; Varela et al., 2001; Engel et al., 2001; 
Friston, 2002). This class of models emphasizes the 
role of spontaneous ongoing activity in maintaining 
active representations that are modulated rather than 

determined by sensory information. Accordingly, 
in this case, spontaneous ongoing activity does not 
reflect trivial noisy fluctuations, but on the contrary, 
the spontaneous ongoing activity is shaped and orga-
nized by the noise into structured spatiotemporal 
profiles that reflect the functional architecture of the 
brain, possibly encode traces of previous behavior, 
or even predict future decisions.
Furthermore, experimental and theoretical evidence 
reveal that the spontaneous ongoing activity of 
local cortical circuits result from a global balance 
between excitatory and inhibitory synaptic currents. 
Experimental observations in vitro (Shu et al., 2003) 
as well as in vivo (Haider et al., 2006) demonstrate 
an ongoing temporal evolution between excitation 
and inhibition, which exhibits remarkable propor-
tionality within and across neurons in active local 
networks. Theoretical studies (Amit and Brunel, 
1997; Brunel and Wang, 2001) indicate that this 
global balance between excitation and inhibition is 
in fact beneficial for sustaining a stable spontaneous 
state and even more it may allow for rapid transi-
tions between relatively stable network states, per-
mitting the modulation of neuronal responsiveness 

Fig. 5. - Space-time structure of the couplings of a 38-node network obtained from the Cocomac database (replot-
ted from Ghosh et al., 2008). We illustrate the distribution of connection weights in the space spanned by the two 
areas connected and the time delay involved. This space-time structure of couplings has been used by Ghosh et 
al. (2008) and Deco et al. (2009). The grey scale code indicates the strength of connections ranging from weakest 
(white) to strongest (black) connection. For a velocity of 1 m/s the mean time delay is around 70 ms, which rep-
resents a lower estimate, because the distances used to compute the delay between two nodes are taken to be 
the Euclidean distances in physical space. The projection of the elements in the space-time structure to the plane 
with time delay equal to zero is shown to the left. Figure adapted from Ghosh et al., 2008.
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in a behaviorally relevant manner. One classical 
example is attention: a balanced network is particu-
lar suitable for biased competition (Rolls and Deco, 
2002; Deco and Rolls, 2005), i.e. it is particularly 
sensitive for amplifying the rate modulation of weak 
external bottom-up or top-down attentional biases.
At the level of global cortical circuits, it would 
be relevant for behavior if the global network of 
cortical and subcortical areas would show a simi-
lar dynamical balance, which would also allow a 
particular sensitivity for permitting rapid transitions 
between stable global network states associated with 
cognitive functions. During the last decade, a large 
number of experimental investigations have been 
focused on the characterization and study of the 
global spontaneous brain activity during rest (i.e. 
intrinsic, and not stimuli- or task-evoked) (Biswal et 
al., 1995; Arieli et al., 1996; Shulman et al., 1997; 
Gusnard and Raichle, 2001; Raichle and Mintun, 
2006). These results suggest that the brain is indeed 
organized into a finite number of distinct oscillating 
resting state networks that then become coordinated 
during task conditions.
Under resting state conditions, the brain shows glob-
al dynamics that can emerge due to its intrinsic char-
acteristics, uncontaminated by the immediate influ-
ence of tasks and stimuli. These intrinsic character-
istics are given by the underlying neuroanatomical 
connectivity matrix, by the temporal delays in the 
communications between different brain areas, and 
also by the general level of fluctuations present in 
each area. Importantly, the balanced dynamical state 
can produce patterns of anti-correlation in the global 
dynamics without the use of long range inhibition. 
The key idea is to associate the patterns of anticor-
relation as reported in the fMRI literature with the 
level of synchronization between different brain 
regions. In fact, recent theoretical models (Honey et 
al., 2007; Ghosh et al., 2008; Deco et al., 2009) have 
shown the relevance of the characteristic “small-
world” structure of the underlying connectivity 
matrix between different brain area, using realistic 
neuroanatomical information on the macaque cortex 
(CoCoMac, see Kötter, 2004), as well as between 
regions of human cortex (Honey et al., 2009). In all 
these models, the common underlying mechanism is 
the following: ongoing fluctuations destabilize the 
groundstate, producing excursions in the dynamical 
repertoire of the global brain network, and resulting 

in oscillations (damped or non-damped) similar in 
structure to those that are experimentally observed 
in resting state subnetworks (see also McIntosh et 
al., 2010). In other words, the space-time structure 
of coupling and time delays in the presence of noise 
defines a dynamic framework for the emergence of 
resting brain fluctuations.
These models (Honey et al., 2007; Ghosh et al., 
2008; Deco et al., 2009) have also shown how 
the level of synchronization is directly associated 
with the BOLD-signal. They demonstrate how fast 
local dynamics generate the slow 0.1 Hz fluctua-
tions at the global level, thus establishing a specific 
link between local neuronal communication and 
global cortical dynamics. Furthermore, patterns of 
anti-correlation emerge as the result of noise-driv-
en transitions between different multi-stable clus-
ter synchronization states. This multi-stable state 
emerges in coupled oscillator systems because of 
the delay transmission times stressing the relevance 
of the space-time structure of couplings in networks, 
where the anatomical connectivity captures the spa-
tial component and the transmission time delays the 
temporal component thereof. For example, in the 
model of Deco et al. (2009) two clusters of oscilla-
tors are shown to exhibit slow fluctuations of their 
synchrony level and of their BOLD signal (Fig. 6), 
which are anticorrelated for a range of noise levels 
(Fig. 7), in line with experimental observations (Fox 
et al., 2005). Additionally, for an optimal noise level 
the anticorrelation is maximal, indicating the pres-
ence of stochastic resonance, which allows network 
dynamics to respond with high sensitivity.
We believe that the particular dynamics of the 
intrinsic properties of the brain are useful for keep-
ing the system in a high-competition state between 
the different subnetworks that may be used dur-
ing different tasks. In this way a relatively weak 
external stimulation is able to stabilize one or the 
other subnetwork giving rise to evoked activity and 
stimulus-dependent processing. The anticorrelated 
fluctuating structure of the subnetwork patterns in 
the resting state is particularly convenient in this 
regard. Metaphorically speaking, the resting state 
is like a tennis player waiting for the service of his 
opponent. The player is not statically at rest, but 
rather actively moving making small jumps to the 
left and to the right, just because in this way, when 
the fast ball is coming the player can rapidly react. 
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Thus the active resting state (fluctuating between 
multistable states) can be sensitive to external sig-
nals that will provoke the activation of one of the 
available multistable states.

Future directions: modeling brain 
damage and repair

Does the manipulation of the space-time structure of 
the couplings suggest routes towards brain recovery? 
One means to answer this question will be through 
combining lesion studies and a modeling approach. 

A computational model of the structure and dynam-
ics of the macaque cortex attempted to establish 
relationships between structural centrality of a lesion 
site and the functional impact resulting from the 
lesion (Honey and Sporns, 2008). The structural net-
work consisted of 47 regions of macaque visual and 
somatomotor cortex and their interconnections, and 
neural dynamics were simulated with a neural mass 
model (Breakspear et al., 2003). Lesions of highly 
connected and highly central hub nodes consistently 
produced lesion effects that extended far beyond the 
actual lesion site. The extent of these non-local lesion 
effects was largely determined by the modularity or 

a b

Fig. 6. - BOLD signal analysis. (A) BOLD fluctuations for each community (1: black; 2: red) and for the difference 
(blue). (B) Power spectrum of the difference in BOLD signal between the two communities. Figure adapted from 
Deco et al., 2009.

Fig. 7. - Correlation between the level of synchronization of the two network communities versus the level of noise: 
simulations (points) and nonlinear least-squared fitting using an a-function (curve). Note the stochastic resonance 
effect: there is an optimal fluctuation level for which both communities are maximally anticorrelated. Figure adapt-
ed from Deco et al., 2009.
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community structure of the underlying structural net-
work. Lesions of highly connected and highly central 
hub regions had the largest effects on functional 
connectivity and information flow, while lesions of 
peripheral nodes had little effect on information flow 
elsewhere in the network. This model was subse-
quently extended to the human cortex (Alstott et al., 
2009). The structural connectivity matrix (derived 
from the study of Hagmann et al., 2008) was lesioned 
in two ways. The first method involved sequential 
deletion of single nodes, which were selected ran-
domly, or on the basis of high degree or centrality. 
The structural effect of the lesion on the remaining 
network was assessed using procedures analogous 
to other network vulnerability studies (e.g. Barabási 
and Albert, 1999; Achard et al., 2006). The second 

method involved the placement of localized lesions 
around selected central locations defined by a stan-
dard brain coordinate. Around this central point, a 
fixed number of nodes (ROIs) and their attached 
edges were removed from the structural matrix, and 
the spontaneous dynamics of the remaining brain 
were recorded and compared to the dynamic pattern 
of the intact brain. The functional impact of localized 
lesions was then quantified by determining the differ-
ence between the spontaneous functional connectiv-
ity of the intact and lesioned brain. Sequential node 
deletion revealed that the human brain structural 
network was resilient to random node deletions and 
deletion of high-degree nodes, but much less resilient 
to deletion of high centrality nodes. Localized lesion 
analysis showed that the centrality of the removed 

Fig. 8. - Dynamic consequences of lesions in a computational model of the human brain. Lesions were cen-
tered approximately at the location of the cross and covered about 5% of the cortical surface around the right 
hemisphere anterior cingulate cortex. Functional connections across the brain that were significantly changed 
(increased or decreased) are shown in a dorsal view of the brain (plot on the left) as well as within the left and 
right hemispheres. Note that the lesion, while limited to only one hemisphere, results in disruptions of functional 
connectivity in both ipsilateral and contralateral hemispheres, and also results in non-local disruptions of functional 
connectivity between remote region pairs. Modified from Alstott et al., 2009.
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nodes was highly predictive of the functional impact 
of the lesion. Among the most disruptive were lesions 
of structures along the cortical midline, including the 
anterior cingulate cortex (Fig. 8), the posterior cin-
gulate cortex, as well as those in the vicinity of the 
temporoparietal junction. Lesions of areas in primary 
sensory and motor cortex had relatively little impact 
on patterns of functional connectivity.
These initial studies clearly illustrate the differential 
effects of disrupting the manipulation of the spatial 
aspects of couplings on the functional organization 
of brain network dynamics. In light of the prior 
discussions in this article, other relevant approaches 
towards the manipulation or control of the brain’s 
functional organization are parameters that enable 
the communication across dynamic scales (such as 
time constants on a given scale of organization), 
time delays and noise characteristics. The latter 
mechanism is discussed in detail by McIntosh et al 
(this issue). To what degree can we use the insights 
gained from these studies to reconstruct or recover 
a desirable functional organization? A first step 
towards this goal is certainly the identification of 
the structural and dynamic components of functional 
networks that enable high cognitive and behavioral 
performance. Second, we suggest the hypothesis 
that a reconstitution of a given specific functional 
organization, such as the resting state, will represent 
an important step towards the improvement of the 
general functional organization, eventually with 
beneficial behavioral effects. To test this hypoth-
esis, a multilayered research program is needed that 
allows integrating the components that provided the 
basis for the brain network models discussed in this 
article. The models we presented here each have 
somewhat different structural bases (e.g., CoCoMac 
vs. DSI connectivity) and generators for the neural 
dynamics (e.g., chaotic vs. Wilson-Cowan oscil-
lators). By merging these ingredients in a single 
computational platform, we will be able to assess the 
impact of parametric manipulations across a range 
of models. An important development that comes 
from such a platform is the capacity to incorporate 
different empirical data into the model. Since the 
model itself can generate EEG, MEG and fMRI 
BOLD data, these same data acquired from empiri-
cal sources can act as hard constraints for the types 
of signals the model must generate. In addition, the 
model would be able to incorporate structural infor-

mation obtained from classical anatomy or noninva-
sive neuroimaging, as well as the implementation of 
multiple experimental paradigms besides the resting 
state. Providing such a link between empirical data 
and the computational platforms opens a completely 
new avenue of research.
In essence, what we are moving towards is a Virtual 
Brain that embodies the critical principles that we 
propose as enabling large-scale neocortical dynamics 
and acts as a means to merge structural and func-
tional data. The informatics challenge is formidable, 
but not unattainable. There are numerous efforts that 
have amassed large imaging data sets, and made 
use of these data for population level studies of 
brain structure (http://www.brain-child.org/). Similar 
efforts exist for functional data (e.g. http://nbirn.net/
research/function/index.shtm, http://www.nitrc.org/
projects/fcon_1000/), and correlated structural, func-
tional and behavioral data will soon become avail-
able in the course of the Human Connectome Project. 
The critical innovation for us is that the Virtual 
Brain becomes the mechanism to take these data and 
integrate them into a single synthetic brain. From a 
population average, the Virtual Brain can generate 
functional data that can be analyzed with exactly 
the same tools that are typically used for experimen-
tal data. Moreover, the Virtual Brain will be able 
to incorporate data sets recorded from individual 
human subjects, allowing insights into how unique 
features of an individual’s brain affect its large-scale 
neural dynamics. This has profound implications 
for clinical use, where a single patient’s brain can 
be modeled as an instantiation of the Virtual Brain, 
enabling a detailed assessment of which parameters 
most contribute to that person’s dysfunction. Finally, 
the Virtual Brain may be endowed with the capac-
ity to reorganize in the face of experience or in 
the event of damage or disease. The Virtual Brain 
thus becomes a laboratory to assess the most effec-
tive means by which reorganization and functional 
recovery can take place through modeling factors 
that re-establish stable spatiotemporal dynamics. 
We suggest that, from the perspective of therapeutic 
intervention and rehabilitation, the potential impact 
of the Virtual Brain is profound.
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