
Introduction

The task of managing, storing and maintaining large 
datasets for stroke recovery research requires a 
combination of data-management techniques. Many 
of these approaches are also being intensively devel-
oped in the context of neuroinformatics infrastruc-
ture for multi-centre clinical trials for other brain 
disorders (Van Horn and Toga, 2009a), although 
there has been some resistance among the brain 
imaging science community to adopting the large-
scale neuroinformatics infrastructures now available 
(Van Horn and Toga, 2009b). This trend is part of 
a larger movement in the biological sciences called 
“bio-imaging informatics” (Peng, 2008). We present 

three types of database-centered infrastructure tech-
niques that address different aspects of the stroke 
research community’s needs, and briefly discuss the 
idea that some combination of all these approaches 
is necessary for answering important questions 
about how the brain recovers from injury or illness. 
Our overall aim is to integrate these three database 
and processing frameworks across our multi-nation-
al centres to accelerate translational neuroscience 
with the goal of directly improving clinical care and 
recovery following stroke.
First we present the Predicting Language Outcome 
and Recovery after Stroke System developed in 
Britain (Price et al., 2010). The PLORAS system is 
used to make predictions on the basis of the recov-
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ery of previous patients with similar lesions, using a 
database that records the speech and language defi-
cits, and recovery of a broad range of patients who 
suffered focal brain lesions producing aphasia. The 
system quantitatively categorizes a lesion and com-
pares it against all others in the database to predict 
longitudinal language outcomes based on similar 
patients in the database.
The second uses the Extensible Neuroimaging 
Analysis Toolkit (XNAT) as a core database frame-
work (Marcus et al., 2007). This has been extended 
to support and address the multiple problems of 
sharing a broad range of heterogeneous data sources 
and/or preexisting databases in the Stroke Patient 
Research Recovery Database (SPReD) as part of 
the multi-institution Centre for Stroke Recovery 
in Canada. Input data sources include direct data 
input and databases of stroke cognition testing, 
motor rehabilitation testing, the separate XNAT-
based Rotman Research Institute’s neuroimaging 
database (RRINiD), and the Prospective Urban 
Rural Epidemiologic MRI study designed to deter-
mine the prevalence of covert cerebral ischemia in 
urban and rural settings in Canada. Through the 
RRINiD, SPReD is coupled to predictive modeling 
of systems level functional connectivity for large 
amounts of fMRI and MRI data using the workflow 
management portal for high-performance computing 
provided by the Canadian Brain Imaging Network 
(CBRAIN) (Rousseau et al., 2009).
Finally, section three presents a natural extension to 
the aforementioned file-based database systems: the 
time series database approach implemented by the 
Computational Neuroscience Applications Research 
Infrastructure (CNARI) in the USA. This incorporates 
novel methods for maintaining, serving, and analyz-
ing large amounts of fMRI data with a focus on work-
flow management and parallel computing coupled 
to a database infrastructure (Small, 2009). A unique 
feature is the storage of fine-grained neuroimaging 
features (e.g., voxels) as elements in the database 
that may be manipulated in highly parallel processing 
pipelines using SQL commands in conjunction with 
other analysis tools. An initial focus has been on neu-
ral network modeling and effective connectivity using 
exhaustive searches of the model space for restricted 
sets of network nodes (Kenny, 2009).
Each of these approaches has a central focus on 
enhancing stroke data sharing, and the coupling of 

this with different innovative capabilities for neuro-
image data analysis that will accelerate translational 
neuroscience for better prediction and understanding 
of brain networks during recovery within the Brain 
Network Recovery Group (http://www.brainnrg.org/).

PLORAS: a database for categorizing 
brain lesions

The aim of the PLORAS database (Price et al., 2010) 
is to Predict Language Outcome and Recovery After 
Stroke but the principles behind the procedures 
could be applied to any other cognitive and sensor-
motor skills that can be impaired after stroke. The 
ability to predict how a patient recovers is impor-
tant because impairment of any key neurological 
domain can have a devastating effect on carrying 
out activities of everyday life. Patients and their 
clinicians need realistic expectations as to how they 
will recover and what the most effective treatment 
will be. However, predicting outcome after stroke is 
notoriously challenging because there is wide vari-
ability in how patients recover and a lack of under-
standing of how the lesion site predicts speech (and 
other) difficulties. Nevertheless, there is already a 
long list of potential factors that influence recovery 
other than lesion site, such as the age of the partici-
pant, the time post stroke, medical co-morbidities, 
educational level, and their motivation and ability to 
attend. To understand how all these factors integrate 
together, we need to combine data from multiple 
patients and multiple sources.
The PLORAS database consists of structural, behav-
ioural and demographic data from a wide range 
of stroke patients. Information on the lesion site 
is determined by high-resolution structural MRI; 
cognitive and language abilities (determined by 
multiple behavioural tests), and key demographics: 
age, handedness, nationality, languages spoken, 
time since stroke, and others. A subset of patients 
have undergone functional MRI) and this allows us 
to include information about the patients’ ability to 
activate different brain areas during a range of per-
ceptual, language and motor tasks. All data are fully 
anonymized. The database has a number of different 
uses because it can be searched by different criteria, 
e.g., by behavioral deficits to find the associated 
lesion site, or by lesion site to predict the behaviour 
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(see Price et al., this issue for how these searches are 
integrated). Here we will focus on how the database 
can be developed for use in the clinical environment.
From a practical perspective, outcome and recovery 
predictions after stroke can be provided by clinicians 
at distal sites uploading a single structural MRI to 
the PLORAS website (currently under development) 
and including a few key variables, e.g. neurologi-
cal domain(s) affected, age. The structural MRI is 
converted into a 3D “lesion image”, which indexes 
the degree of abnormality at each voxel of the brain 
in a standard space. The details from the lesion 
image are then used to search the PLORAS database 
for patients with similar lesions. The details of all 
patients with corresponding lesions are then sum-
marised into graphical outputs that illustrate how 
these patients recovered over time (see Price et al., 
2010). The predictions are probabilitistic (mean and 
standard deviation), and thus their precision can be 
immediately appreciated. This is important because 
outcome and recovery are much more consistent 
after some lesions than others.
From a technical perspective, the success of the pre-
dictions depends on a number of factors. The two 
most obvious factors are the number of patients with 
similar lesions in the database; and the precision in the 
lesion similarity measures. More specifically, if the 
number of “corresponding” patients in the database 
is small, then the estimation of the mean and standard 
deviation of their recovery will be imprecise and the 
influence of other factors (age, time post stroke etc.) 
may not be available. The precision of the similarity 
measures depends on the quality of the original struc-
tural MRI, the success of the spatial normalisation 
procedures and the estimation of the structural abnor-
mality at each voxel. The accuracy of the predictions 
can, nevertheless, be constrained by prior knowledge 
using Bayesian approaches. The PLORAS procedures 
can therefore capitalize on recent developments in the 
use of predictive modelling, using, for example, sup-
port vector machines and multivariate lesion analyses. 
These procedures allow us to bias the whole brain 
lesion descriptions, towards the parts of the lesion that 
we expect to have greatest predictive validity. The 
degree to which our language recovery predictions are 
improved by the inclusion of prior knowledge can be 
assessed using Bayesian model comparison.
Our understanding of which brain areas and white 
matter connections are likely to be important for 

our structural predictions is developing at an expo-
nential rate. More specifically, we are using the 
PLORAS database to generate the “structural fea-
tures” that will be embedded into the “lesion simi-
larity measures”. For example, in Price et al. (this 
issue), we correlated lesion data with behavioural 
outcome to identify those lesion sites that are most 
strongly associated with difficulty gesturing the use 
of an object (i.e. lesion-symptom mapping). We 
are also correlating structural MRI data with func-
tional MRI data to ascertain how patients recover 
specific language skills following damage to key 
language areas. In summary, the key data features 
for the lesion similarity measures include specific 
cortical areas that have been functionally defined by 
functional MRI or lesion-symptom mapping; white 
matter tracts that have been identified by lesion-
symptom mapping; and higher order combinations 
of cortical areas and white matter tracts that cause 
more damage than would be expected from the sum 
of damage to each component alone (the principle 
of degeneracy).
The PLORAS database can also be used to inves-
tigate the non-lesion factors that affect prediction. 
For some lesions, we expect the variability between 
patients to be small. In these cases, the precision 
of our predictions will be good. For other lesions, 
there may be considerable variability in the course 
of recovery. This is being investigated by examin-
ing the effects of non-lesion factors such as age, 
handedness, hours of speech and language therapy, 
educational attainment, motivation, vision, hearing, 
and attention. Again, the predictive value of these 
measures will be based on Bayesian model com-
parison and assessment of generalisation error by 
splitting extant patients into test and training groups.

SPReD: a web-based database for 
heterogeneous data-sharing using 
XNAT

The Stroke Patient Research Recovery Database 
(SPReD) within the Centre for Stroke Recovery 
(http://heartandstroke-centrestrokerecovery.ca/our-
research/spred) acts as a flexible hub that receives 
heterogeneous stroke-related data from diverse clin-
ical and research projects and integrates the results 
into a navigable data set that may be shared, aug-
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mented and redistributed. The core of SPReD lever-
ages the XNAT neuroinformatics platform (Marcus 
et al., 2007) that provides a flexible data model, a 
rich web-based user interface, and an expressive 
low-level interface for use by auxiliary software. In 
addition to XNAT, a set of modular interface pro-
grams have been developed to adapt SPReD to the 
unique requirements of each of the projects and pro-
cessing pipelines with which SPReD interacts and to 
facilitate incorporation of new projects. Existing and 
potential project and resource connections to SPReD 
are illustrated in Fig. 1.
There are four primary functions within SPReD: 
(1) adaptation, whereby the system conforms to 
the requirements of a particular research project or 
database-processing resource such as PLORAS (see 
above), CNARI or the Virtual Brain (see below and 
McIntosh et al. this issue); (2) integration, where 

data of diverse organization and content from mul-
tiple sources may be unified along common factors 
using ontologies (Bug et al., 2008; Bilder et al., 
2009; Konstantinos et al., 2009); (3) sharing, so 
that the integrated data may be made available to a 
wide audience of researchers for collaboration and 
data mining while satisfying privacy constraints; (4) 
navigation, which provides the searching, browsing 
and export functions required to identify and extract 
desired data.
As shown in Fig. 1, SPReD is currently connected 
with or being adapted to the:
– Rehabilitation Affiliates, a multi-centre rehabili-

tation project distributed across six hospital sites 
in Ontario, and the data collected emphasizes 
cognitive, physical and emotional assessments, 
with current uploads via local Access databases 
and Excel spreadsheets.

Fig. 1. - Schematic outline of the SPReD database with current and proposed links to other data repositories and 
processing resources.
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– Integrated Neurocognitive assessment system 
(INCAS), which provides clinical management 
and assessment of stroke patients at three Center 
for Stroke Recovery hospitals using a behav-
ioural battery based on the NIH consensus bat-
tery (Hachinski et al., 2006), and tested using a 
computer tablet that feeds results to a MySQL 
database and a DICOM server.

– Prospective Urban Rural Epidemiologic (PURE)-
MRI project, which is collecting approximately 
1000 subjects’ MRI scans to study covert stroke 
using the Canadian cohort within the PURE 
study, a multinational study examining determi-
nants of cardiovascular disease coordinated by 
the Population Health Research Institute (http://
www.phri.ca/body.cfm?id=514) – SPReD pro-
vides the neuroimaging database facility with 
DICOM data uploads from four Canadian collec-
tion sites, download and analysis at the Seaman 
MRI Centre in Calgary.

– Rotman Research Institute’s Neuroimaging 
Database (RRINiD) which manages all neuro-
imaging studies from research projects at the 
Rotman Research Institute (http://www.rotman-
baycrest.on.ca/index.php?section=532) with data 
flows to SPReD through a Representational State 
Transfer (REST) interface. The RRINiD is con-
nected to Canadian high-performance comput-
ing sites through the Canadian Brain Imaging 
Network (CBRAIN) web portal (http://cbrain.
mcgill.ca/), a platform currently supported by 
five neuroimaging centres that provides distrib-
uted processing, analysis, exchange and visu-
alisation with the goal of rendering the process-
ing environment transparent to a remote user 
(Rousseau et al., 2009).

– Genomic and Proteomic data sequences gener-
ated by the Ontario Hospital Research Institute in 
Ottawa on Centre for Stroke Recovery subjects 
who may also be included in the Rehabilitation 
Affiliates or other SPReD project collections.

Each input site stores a variety of data in a variety 
of structures. To adapt to these, SPReD makes use 
of adaptable formats such as the extensible markup 
language (XML) and XML schema description 
(XSD), the latter largely implemented by XNAT. 
SPReD also adapts its communication structure 
using modular interface programs to obtain and store 
the data from each site. In addition, by extending 

the XNAT pipeline architecture, we are currently 
testing an interface between the CBRAIN portal and 
the RRINiD. We plan to use this interface to provide 
the capability for SPReD to also initiate and receive 
results from high performance computing environ-
ments via CBRAIN (Rousseau et al., 2009) and 
CNARI (see below). For example, we plan to utilize 
this high-performance computing interface via the 
CBRAIN portal to extensively test the relationship 
between complexity measures based on fMRI func-
tional connectivity and behavioural recovery follow-
ing stroke (see Yourganov et al., this issue).
Integration of the data involves two main factors, 
identification of common subjects and unification 
of common categories. The input sites practice only 
internal subject coordination (e.g., only project- or 
site-specific subject identifiers), thus preventing 
aggregation of an individual subject’s data should 
the person move among projects. SPReD has the 
ability to identify and integrate diverse project data 
from a single common subject with a high degree of 
certainty in the identification, while satisfying pri-
vacy concerns and legislation (e.g., Canadian Panel 
on Research Ethics, 1998) by not exposing person-
ally-identifying information. Identifying informa-
tion such as name and date of birth are replaced 
with unique cryptographic hashes of those values, 
which enables common subjects to be identified but 
does not permit the original values to be retrieved, 
thus preventing personal identification. By adding a 
random numeric or salt value to the calculation and 
protecting the values in a secure location, we avoid 
the small risk of re-identification through dictionary 
attack (Mironov, 2005). In Fig. 1 this secure loca-
tion is represented by the ID Vault, a tightly-secured 
computer with a hardware-encrypted disk connected 
only to the SPReD server via an encrypted private 
network.
Data sharing in SPReD is implemented through 
XNAT combined with custom extensions. Data 
is organized into individual projects, where each 
project has any number of users who may be des-
ignated as owners, collaborators or members, each 
with differing roles and permissions. SPReD adds 
to XNAT the ability to anonymize data – stripping 
DICOM header fields and removing facial MRI fea-
tures – and to export limited subsets of the data set. 
Ownership and sharing of the original data remains 
with the principal investigator of each contributing 
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project, but new projects accessible to other mem-
bers (e.g. all Centre for Stroke Recovery and Brain 
Network Recovery Group members) may be defined 
to contain selected subsets of data from multiple 
projects (e.g. resting state data from multiple stroke 
projects).
To achieve further integration by unification of com-
mon categories, SPReD extends the schema func-
tionality of XNAT to capture high-level information 
about the relationships between the data elements 
(an ontology.) This information is processed via an 
inferential query engine to identify and integrate 
common categories of data, making them amenable 
to searching. For example, the integrated neurocog-
nitive assessment system may record that a subject 
was prescribed a specific dose of warfarin, while 
Rehabilitation Affiliates simply notes whether the 
subject was taking anticoagulants; SPReD would 
allow the former subject to be retrieved even while 
searching for subjects via the latter description 
(“show subjects taking anticoagulants”). SPReD 
preserves the original structure and content of the 
input site’s data, and allows complex integration 
ontologies to be developed through stepwise refine-
ment, as time, motivation and expertise are available. 
This process is facilitated through the use of exist-
ing technologies developed for the Semantic Web 
(Berners-Lee et al., 2001), including the resource 
description framework (RDF) data model (RDF, 
W3C, 2004), ontological formalization through the 
OWL web ontological language (OWL, W3C, 2009) 
and the RDF query language SPARQL (SPARQL, 
W3C, 2008). We are starting to employ these tech-
nologies through the integrated knowledge-base sys-
tem Protégé (Gennari et al., 2003). The development 
of standardized neuroinformatics ontologies has 
been underway for several years (Bug et al., 2008) 
and SPReD benefits from that work by employ-
ing the same foundational technology.The flex-
ible search and browsing features of XNAT enable 
navigation of data in SPReD, with a small extension 
for generating aggregate statistics. When custom 
types are defined within XNAT, they can include 
specific search and browsing web page definitions, 
which allows comprehensible displays to be created. 
To assist in data mining while preserving ethics-
mandated requirements for sharing only consented 
information, SPReD extends that search capability 
to allow users to search on data that is not otherwise 

accessible to them, returning simply the number of 
matches along with the source of the matching data 
but without additional details, i.e., the actual data is 
not shared. The searching user may then contact the 
owner of the matching data and request access. This 
enables a researcher to determine if there are suf-
ficient subjects matching specific criteria to justify 
approaching other researchers and arranging ethics 
amendments and other regulatory requirements. 
Finally XNAT allows the accessible information to 
be downloaded in several different formats, includ-
ing XML, zip and tar archives.

Planned integration: PLORAS + SPReD
The planned integration between PLORAS and 
SPReD will operate in several phases. Our initial 
goal is to develop and test a simple SPReD pipeline 
that sends one or more, de-identified aphasic stroke 
MRIs from SPReD or CNARI (see below) to query 
PLORAS’ inference engine for recovery prob-
abilities, and returns these probabilities and associ-
ated measures to SPReD for incorporation into the 
patient’s record. This will require testing of the 
lesion segmentation tools available within PLORAS 
(Seghier et al., 2008) on MRIs from SPReD and 
CNARI, and development of metrics that measure if 
the tools have performed sufficiently well to allow 
comparison with the existing database. We will 
facilitate this testing by implementing the tools as 
pipelines that may be run directly on MRIs within 
SPReD. Such testing and querying of the PLORAS 
database and inference engine will help to augment 
the PLORAS sample size and prediction accuracy 
for MRIs that pass the quality metrics and can be 
shared. Second, we will develop a joint aphasic-
stroke schema modeled on that used by PLORAS 
and in coordination with existing stroke and behav-
ioural schemas in SPReD and CNARI. Our goal 
here is to create a merged schema for aphasic stroke, 
which can form the basis of a future stroke ontology, 
and be used to enable bidirectional sharing of full 
data sets, including structural and functional neuro-
imaging and all associated meta data. Such sharing 
of complete data sets between our three sites with 
large research efforts directed at stroke recovery will 
facilitate targeted testing of the additional predic-
tive power of site-specific measures available from 
Integrated Neurocognitive Assessment System and 
Rehabilitation Affiliates in SPReD, and CNARI. We 
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believe that such sharing, augmented by state-of-
the-art data warehousing, and processing pipelines 
will help to rapidly narrow the range of imaging 
tests and measures most effective in prediction of 
stroke recovery, initially in aphasia, and eventually 
in other types of behavioral recovery outcomes.

Computational Neuroscience 
Applications Research Infrastructure 
(CNARI): time series data mining on 
the Grid

XNAT-enabled neuroscience portal
Science gateways are a means of allowing groups of 
researchers and large collaborations to share process-
ing power, workflow management systems, and anal-
ysis techniques. Gateways are well-established in 
the field of Grid computing (Welch, 2006; Adolphs 
2007; Scavo, 2007) and CNARI is currently part of a 
science gateway to the TeraGrid (Catlett, 2007). As 
noted above a primary goal of integrating our three 
database frameworks is to develop an infrastructure 
that will allow multiple, international collaborating 
institutions to manage and execute processing work-
flows from an XNAT repository maintained as part 
of the SPReD collaboration, and feed analysis results 
back into the repository for visualization and sharing. 
A central component of CNARI is the Swift work-
flow management system (Zhao, 2007). XNAT lends 
itself well to integration with Swift, as well as with 
CBRAIN, in that there is existing support for cluster 
execution via XNAT’s pipeline engine, which can be 
extended to execute Swift scripts that are either auto-
matically generated on the portal or constructed by 
the user. This results in an integrated infrastructure 
that is both a repository and a portal.

Motivation for time series databases in 
neuroimaging
A natural supplement to systems for storing and 
sharing image files in stroke research are time series 
databases such as used in CNARI. With a time series 
database researchers can process imaging data using 
highly-specific search criteria to run analyses direct-
ly on the brains, regions, voxels or surface-mesh 
vertices using a shared data base management sys-
tem (Small, 2009) without the need for downloading 
individual image files. In particular, in a processing 

environment where downloaded files will neces-
sarily undergo transformation and likely be farmed 
out to a remote cluster for processing, downloading 
becomes inefficient. As part of our planned inte-
gration of PLORAS, SPReD and CNARI, we will 
utilize the strengths of all three systems by develop-
ing both a repository that allows for archiving, and 
distributed processing of the flat-files in the reposi-
tory (e.g., using the SPReD-CBRAIN interface), and 
user-generated time series tables.
For example, a set of user-generated time series 
tables might include signal values for each voxel at 
each time point along with their associated regions 
of interest and t-statistics for a given scan or set of 
subject scans. A workflow can then be constructed 
to extract the time series of voxels that showed a 
particular level of activity and are associated with 
selected regions of interest; Hasson (2008a) gives 
a detailed example of such a workflow. Coupling 
archiving and storage with data processing reduces 
the need for data transfer and, perhaps more signifi-
cantly, the need for the user to store an entire dataset 
on his local file system in order to run an analysis on 
it. For example, in the case of flat files, performing 
an analysis over all subjects in an experiment would 
require specifying the processing workflow and its 
input files directly on the portal and then launching 
the workflow, to be processed on a remote cluster 
(e.g. the TeraGrid or CBRAIN). The final stage of 
the workflow would include uploading the results 
from the compute resource back into the repository 
so that they would be available for download, visu-
alization or further processing.
If a user wishes to run an analysis on imaging data 
stored in a time series database, workflow specifica-
tion also includes generation of the database tables. 
Input tables are populated from files within the 
repository and results tables are populated by the 
processing jobs themselves. With remote processes 
operating directly on the tables there is no need to 
transfer complete image files to and from the com-
pute resource and both cases obviate the need for the 
user to directly download imaging data. Thus, while 
flat file repositories are vital for archiving and meta-
analysis, time series databases that represent signal 
values at each time point for each voxel or vertex in 
a scan are well suited to the mining of patterns mak-
ing a hybrid system potentially more flexible and 
powerful than either approach by itself.
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Time series databases have been in wide use for 
some time in other communities, such as finan-
cial trading (Chandra, 1993) and weather informa-
tion systems (Goodall, 2007). Furthermore, they 
lend themselves well to various web services. For 
instance, Goodall (2007) demonstrated a suite of 
tools for mining the national weather information 
system time series database, which collects 800,000 
observations of ground water level on a daily basis. 
Users can then capture subsets of this based on a 
web form submitted directly from the site or using 
a variety of web services. The web form gener-
ates queries across a large time series database and 
returns the results to users in the form of temporary 
tables, which can then be fed into locally available 
statistical tools. This provides a reasonable proto-
type for combining the efforts of SPReD with those 
of CNARI into a unified resource via a web interface 
that would be suited to probing issues such as effec-
tive connectivity for predefined groups of regions 
during recovery from stroke (James et al., 2009). 
For a detailed description of how such structural 
equation modeling has been implemented within the 
CNARI framework, please see (Kenny et al., 2009), 
which is summarized below.

Integration: CNARI + SPReD
Schemas that optimize both data importation and 
mining have become vital to some important paral-
lelized, database-centric workflows in the neuroim-
aging community. For example, users can execute a 
workflow that pulls signal values for batches of ver-
tices, in parallel from a database holding surface data 
indexed by vertex (Skipper, 2007; Hasson, 2008b) 
for rapidly running statistical tests. Integrating a 
time series database with SPReD creates additional 
possibilities for both single session and longitudinal 
stroke studies utilizing novel mining techniques and 
exploratory queries that look for patterns (Andric, 
2009) while lending itself to fast parallel analysis 
workflows (Kenny, 2009; Small, 2009).
The CNARI stroke data ontology includes fMRI, 
physiological measures, DTI data and stimulus 
features, with the aim of providing a platform for 
the fine-grained, exploratory analysis workflows 
to be coupled with querying across multiple mea-
sures simultaneously. Because storage of all of this 
data in a DBMS requires a great deal of space, we 
have chosen a hybrid architecture whereby data can 

be exported to a database on an as-needed basis. 
Specifically, XNAT allows for users to create 
customized processing pipelines and our CNARI-
SPReD implementation of XNAT will offer, as 
a standard processing pipeline, the transforma-
tion of file data into temporary, compressed, time 
series database tables that would enable distributed, 
database-centric processing. Such a pipeline would 
also include tools for re-importing the data into 
the repository. If the output from such a workflow 
results in another table, which can be written to 
file and stored in the repository (and subsequently 
transformed back to a table should the user require 
it). This infrastructure would allow for fluid move-
ment back and forth from time series database tables 
to XNAT-controlled files such that users can eas-
ily specify, via an XNAT pipeline, the input they 
require for their processing tools.
Currently within CNARI, processing is distrib-
uted using the Swift workflow management system 
where users write and execute Swift scripts, which 
are used to call arbitrary image processing or statisti-
cal software within a single script. Input files to the 
scripts generally sit on the local file system (though 
as far as Swift is concerned they can live anywhere). 
Users execute the script using a simple command-
line interface usually running in a screen session 
where users can detach from the running process if it 
is a long-running workflow, and periodically check 
for results. While this method for running is rather 
simplistic it is useful and well tested. The next step is 
a more robust user interface such as integration with 
SPReD/XNAT. In our CNARI-SPReD implementa-
tion, both analysis (database-centric) and prepro-
cessing (flat-files) would be run on remote clusters 
or Grids separate from the XNAT server repository, 
but launched and monitored from within it. Because 
CNARI already distributes its workflows over a 
local cluster and TeraGrid’s TACC and NCSA sites, 
executed from the local file system, initiating execu-
tion from the XNAT repository seems a logical pro-
gression for that functionality.
Our initial work has specifically focused on fMRI 
data, in which we have enabled querying CNARI 
for activation from sets of nodes (or regions of 
interest) to examine connectivity within networks 
using structural equation modeling (Kenny, 2009). 
Applying this method to the analysis of stroke data 
includes comparing this network connectivity in 
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stroke subjects to that of control subjects as well as 
comparing connectivity in stroke subjects at differ-
ent time points for longitudinal analysis. Once a user 
has exported a time series to a database, CNARI can 
be used to optimize time series extraction by iterat-
ing over a) different criteria for node activation (e.g. 
using the maximum t-value from the node versus 
using the average) b) multiple subjects, c) multiple 
sets of nodes, and d) multiple experimental condi-
tions, all of which would be specified in a single 
Swift script and run in parallel. This workflow can 
then be extended to extract behavioral measures 
(residing in the repository) that are associated with 
the given subject, scan session and experimental 
condition to explore relationships between the 
structural equation models and observed behavior.

Discussion

While PLORAS, SPReD and CNARI have each 
developed relatively separately they are all focused 
on facilitating data sharing and analysis with the 
common goal of understanding what may improve 
treatment and prediction of recovery from the dev-
astating consequences of stroke. These three data-
basing approaches are quite complimentary, and we 
believe that linking them using SPReD-XNAT tools 
for managing and processing shared data collections 
from heterogeneous data-repositories will provide 
a coordinated sum that will almost immediately 
improve prediction of recovery, and greatly facili-
tate development of better prediction and treatment 
assessment tools. To our knowledge this will form 
the first such integrated, multi-national stroke data-
base, initially focused on aphasia, but eventually on a 
broad range of possible outcomes. It is further unique 
in our ongoing efforts to provide integrated portals 
and parallelized processing pipelines with a focus 
on functional metrics (Yourganov et al., this issue) 
and effective connectivity measures (Kenny et al., 
2009) in stroke recovery, which may further augment 
prediction over the basic measures available within 
PLORAS using segmented lesions from MRIs.
Finally, these integrated data storage and processing 
platforms will be linked to the proposed new simula-
tion tool provided by the virtual brain database (See 
Fig. 1, and McIntosh et al., this issue). The central 
goal is to allow clinicians and researchers to access 

not only comprehensive data sets, processing tools 
and prediction results for recovery of brain func-
tion, but to augment these with a state-of-the-art 
simulation of the brain’s systems-level, nonlinear 
dynamics based on structural and functional con-
nectivity constraints from real data. The ultimate 
goal is to incorporate simulations of lesion results as 
part of our armamentarium for enhancing prediction 
of network recovery after brain damage and testing 
both virtual and real treatment options. The first step 
towards this goal is our proposed integration of the 
existing PLORAS, SPReD and CNARI databases 
and their associated processing platforms.
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