Inhibition of vestibulospinal reflexes following cholinergic activation of the dorsal pontine reticular formation.

P. d' Ascanio, O. Pompeiano, G. Stampacchia, G. Tononi

Abstract


1. The multiunit EMG activity of the forelimb extensor muscle triceps brachii was recorded in precollicular decerebrate cats, either at rest or during roll tilt of the animal at 0.15Hz, ± 10 degrees leading to sinusoidal stimulation of labyrinth receptors. Both the spontaneous EMG activity as well as the labyrinthine-induced EMG responses were tested before and after pontine microinjection of a cholinergic agonist. 2. Local injection of the cholinergic agonist carbachol into the dorsal aspect of the pontine tegmentum (usually 0.25 microliter, 0.01-0.2 microgram/microliter) produced a state of postural atonia, and abolished both the spontaneous EMG activity as well as the EMG responses of the triceps brachii to sinusoidal stimulation of labyrinth receptors. This suppression was generally ipsilateral to the side of the injection and persisted throughout the episode of postural atonia, but sometimes it involved also the contralateral limbs. In these instances it could be accompanied by a spontaneous nystagmus, interspersed at regular intervals with bursts of rapid eye movements. 3. Similar effects were also obtained following injection of carbachol in the gigantocellular tegmental field (FTG) (0.25 microliter, 0.5-1.0 microgram/microliter). However, this structure was not critically responsible for the phenomena reported above, which persisted unaltered after kainic acid lesion of the FTG performed ipsilaterally to the side of the pontine injection. 4. Local infusion of the muscarinic blocker atropine sulphate reversed the effects of carbachol injection into the dorsal aspect of the pontine tegmentum, thus indicating that muscarinic receptors were involved. 5. It is postulated that the postural atonia as well as the tonic depression of vestibulospinal reflexes, which occur in the decerebrate cat after local injection of a cholinergic agonist depends, at least in part, on the activation of cholinoceptive neurons located in dorsal pontine reticular structures. These may in turn excite medullary reticulospinal neurons, which are finally responsible for the inhibition of extensor motoneurons.

Full Text:

PDF


DOI: https://doi.org/10.4449/aib.v126i4.972

Refbacks

  • There are currently no refbacks.