Open Access Open Access  Restricted Access Subscription or Fee Access

Cholinoceptive pontine reticular structures modify the postural adjustments during the limb movements induced by cortical stimulation.

P. Luccarini, Y. Gahery, O. Pompeiano


1. Activation of the pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system decreases the postural activity. This effect can be achieved either by local injection into the dorsal pontine tegmentum of cholinergic agonists which excite cholinoceptive pRF neurons, or by injection of noradrenergic agents which block the inhibitory influence exerted by the locus coeruleus (LC) neurons on the pRF. The main aim on the present study was to analyze the effects of tonic activation of these pRF neurons on the postural adjustments accompanying limb movements induced by motor cortex stimulation. In particular, electrodes were implanted chronically in the motor cortex of cats and stainless steel guide tubes of small size, later used for drug injection, were set bilaterally into sites just above the responsive regions. 2. Limb flexion elicited by stimulation of the motor cortex was accompanied by a diagonal pattern of postural adjustment, characterized by a decreased force exerted by the limb diagonally opposite to the moving one and an increased force exerted by the other two. 3. Microinjection into the pRF of both sides of 0.25 microliter of the muscarinic agonist bethanechol at the concentration of 8 or 16 micrograms/microliters in buffered artificial cerebrospinal fluid produced a short-lasting episode of postural atonia followed by a period of reduced postural activity, during which the cats were still able to stand on the measurement platform. Under this condition no changes in threshold, latency and amplitude of the flexion response were observed in the performing limb; however, the postural responses were considerably affected. In particular, when the performing limb was a forelimb, the other anterior limb showed a dissociation of the postural response in two distinct components. The first anticipatory component, which had a short latency (12-15 msec) and was considered to be centrally triggered, decreased in amplitude after injection of bethanechol and sometimes disappeared; on the other hand the second component, which had a long latency (50-60 msec) and was thus considered to be of reflex origin, increased in amplitude, due to the instability resulting from the depression of the early postural response. Similar results also affected to a lesser extent the hindlimbs. Moreover, body oscillations were observed and monitored from the force platforms following the late component of the postural responses.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text:




  • There are currently no refbacks.