Open Access Open Access  Restricted Access Subscription or Fee Access

Cholinergic microstimulation of the peribrachial nucleus in the cat. II. Delayed and prolonged increases in REM sleep.

J. M. Calvo, S. Datta, J. Quattrocchi, J. A. Hobson

Abstract


The hypothesis that REM sleep is cholinergically mediated is supported by the identification of a cholinoceptive trigger zone in the FTG. Since this trigger zone is devoid of cholinergic neurons, the aim of the present study was to test the hypothesis that a cholinergic drive for REM sleep may come from the cholinergic cells of the PBL region. Chronically implanted freely moving cats with electrodes for sleep and PGO wave recordings were used. Guide tubes were implanted for carbachol microinjections (4 micrograms/250 nl) in the PBL and FTG. All microinjections were delivered in close vicinity of ChAT+ cholinergic cells in the PBL region. Results showed that a single unilateral carbachol microinjection into the PBL induced sustained (24 hr) state-independent ipsilateral PGO wave activity. This PGO wave activity was followed by a prolonged enhancement of REM sleep lasting for more than six days. We also observed that REM enhancement was followed by a delayed but marked enhancement of S sleep episodes with PGO waves (SP), which are normally brief transitions from S to REM sleep. Our findings strongly support the hypothesis that cholinergic drive for REM sleep comes from the lateral pontine tegmentum and we suggest that the PBL region plays a major role in both PGO wave generation and long-term regulation of REM sleep induction.

Full Text:

PDF


DOI: https://doi.org/10.4449/aib.v130i4.630

Refbacks

  • There are currently no refbacks.