Open Access Open Access  Restricted Access Subscription or Fee Access

Neuronal pathways from foot pad afferents to hindlimb motoneurons in the low spinalized cats.

N. Wada, Y. Kanda, R. Takayama


Experiments were performed on 16 adult spinalized (L2) cats. Postsynaptic potentials (PSPs) produced by electrical stimulation of afferent nerves innervating foot pads were recorded from hindlimb motoneurons innervating the following hindlimb muscles: the posterior biceps and semitendinosus (PBSt), anterior biceps and semimembranosus (ABSm), lateral gastrocnemius and soleus (LGS), medial gastrocnemius (MG), plantaris (P1), tibialis anterior (TA), popliteus (Pop), flexor digitorum longus and flexor hallucis longus (FDHL) and peroneus longus (Per.l). The rate of occurrence of different types of PSPs (EPSPs, IPSPs and mixed PSPs), the size of the PSPs and their central latencies were analyzed for each group of motoneurons to identify the neural pathways from the afferents innervating foot pads to hindlimb motoneurons. The rates of occurrence of different types of PSPs did not depend on the foot pad stimulated in PBSt, ABSm and LGS motoneurons, but for other groups of motoneurons their rates of occurrence depended on the foot pad stimulated. It was often noted that the size of PSPs in the same motoneurons differed according to the foot pad stimulated. Measurements of the central latencies of the PSPs indicated that the shortest neural pathways for EPSPs and IPSPs were disynaptic (central latencies less than 1.8 ms). The functional role of neuronal pathways from afferent nerves innervating foot pads to hindlimb motoneurons could be to maintain stability of the foot during different postural and motor activities.

Full Text:




  • There are currently no refbacks.