Paradoxical REM sleep promoting and permitting neuronal networks.
Abstract
Since its electrophysiological identification in the 1950's, the state of REMS or PS has been shown through multiple lines of evidence to be generated by neurons in the oral pontine tegmentum. The perpetration of this paradoxical state that combines cortical activation with the most profound behavioral sleep occurs through interplay between PS-promoting (On) and PS-permitting (Off) cell groups in the pons. Cholinergic cells in the LDTg and PPTg promote PS by initiating processes of both forebrain activation and peripheral muscle atonia. Bearing alpha1-adrenergic receptors, cholinergic cells, which likely project to the forebrain, are excited by NA and active during both W and PS (W/PS-On), when they promote cortical activation. Bearing alpha2-adrenergic receptors, other cholinergic cells, which likely project to the brainstem, are inhibited by NA and thus active selectively during PS (PS-On), when they promote muscle atonia. Noradrenergic, together with serotonergic, neurons, as PS-Off neurons, thus permit PS in part by lifting their inhibition upon the cholinergic PS-On cells. The noradrenergic/serotonergic neurons are inhibited in turn by local GABAergic PS-promoting neurons that may be excited by ACh. Other similarly modulated GABAergic neurons located through the brainstem reticular formation become active to participate in the inhibition of reticulo-spinal and raphe-spinal neurons as well as in the direct inhibition of motor neurons. In contrast, a select group of GABAergic neurons located in the oral pontine reticular formation and possibly inhibited by ACh turn off during PS. These GABAergic PS-permitting neurons release from inhibition the neighboring large glutamatergic neurons of the oral pontine reticular formation, which are likely concomitantly excited by ACh. In tandem with the cholinergic neurons, these glutamatergic reticular neurons propagate the paradoxical forebrain activation and peripheral inactivation that characterize PS.
Full Text:
PDFDOI: https://doi.org/10.4449/aib.v142i4.413
Refbacks
- There are currently no refbacks.