Relationship between sleep and eye state in Cetaceans and Pinnipeds.

O. I. Lyamin, L. M. Mukhametov, J. M. Siegel

Abstract


We recorded EEG from both hemispheres and documented the state of the two eyes in two species of Cetaceans (one beluga and one bottlenose dolphin) and one species of Pinnipeds (two northern fur seals). In the dolphin and beluga we found that episodes of unihemispheric slow wave sleep (USWS) were associated with asymmetry in eye state. During USWS and asymmetrical SWS the eye contralateral to the sleeping hemisphere was mostly closed or in an intermediate state while the eye contralateral to the waking hemisphere was more often open or in an intermediate state. Bilateral eye opening indicated waking in about 80% cases and unilateral eye closure indicated USWS with an accuracy of about 75%. Bilateral eye closure was rare (less than 2% of the observation time) and was not necessarily associated with high amplitude SWS. In fur seals, episodes of one eye briefly opening usually occurred in the beginning of sleep episodes and lasted several minutes. Those episodes were frequently associated with lower amplitude EEG slow waves in the contralateral brain hemisphere. During most of their sleep on land, fur seals had both eyes tightly closed. No EEG asymmetry was recorded at this time. Although eye state and EEG stage are correlated in the bottlenose dolphin, beluga and fur seals, short episodes of EEG synchrony (less then 1 min) occur contralateral to an open eye and waking (a more activated EEG) activity can be present contralateral to a closed eye. The available data suggest that two functions of USWS/EEG asymmetry during SWS in Cetaceans and fur seals are multisensory control of the environment and maintenance of motion and postures of sleep. The adaptive advantages of USWS throughout the evolution of Cetaceans and Pinnipeds from terrestrial mammals to present forms could include 1) the avoidance of predators and maintenance of contact with other animals of the same species; 2) continuance of regular breathing; 3) and effective thermoregulation in the water environment.

Full Text:

PDF


DOI: https://doi.org/10.4449/aib.v142i4.427

Refbacks

  • There are currently no refbacks.