N400-like responses to three-chord harmonic sequences with unexpected out of key endings: scalp topography, cortical sources, and perspectives for a clinical use
Abstract
A series of ERP components, each provided with both a precise timing with respect to stimulation and a specific cortical localization, reflects the temporal succession of processing stages of music information. This makes the musical stimulus potentially usable to probe residual brain functions in non-communicating patients with disorders of consciousness. In an attempt to find a simple stimulation protocol that was suitable for use in a clinical setting, the purpose of this study was to verify whether a minimum-length musical stimulus, provided with a definite music-syntactic connotation, was still able to elicit musical ERPs in a group of eight healthy subjects. The stimulus was composed of the minimum number of chords necessary and sufficient to enable the subject to predict a plausible closure of the sequence (priming) and, at the same time, to provide him/her with the closing chord of the sequence (target), either congruous (probable closing) or not (improbable closing) to the tonal context. The subject’s task was to discriminate and recognize the irregular targets. The components that were expected to be elicited, in this experimental situation, were ERAN, N5, P600/LPC. Conversely, in addition to these former components, we unexpectedly observed a N400-like component. To determine whether this component was a real N400, we submitted our data to a sLORETA analysis in order to identify its cortical generators. Irregular chords showed higher current densities with respect to regular ones on the right-sided medial and superior temporal gyri, superior and inferior parietal lobules, fusiform and parahippocampal gyri, and on the bilateral posterior cingulate cortex. In particular, the N400-like wave seems to share with the word-primed music-elicited N400 certain generators that are located in cortical areas BA 21/37 and BA 22. This suggests that even chord-primed chord targets can convey extra-musical meanings and that, consequently, they might be useful in assessing residual higher-order information-processing capabilities in non-communicating patients with disorders of consciousness.
Keywords
Full Text:
PDFReferences
Aminoff E.M., Kveraga K., Bar M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci., 17(8): 379-390, 2013.
Aminoff E.M., Gronau N., Bar M. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb. Cortex, 17(7): 1493-1503, 2007.
Babiloni C., Del Percio C., Lizio R., Marzano N., Infarinato F., Soricelli A., Salvatore E., Ferri R., Bonforte C., Tedeschi G., Montella P., Baglieri A., Rodriguez G., Famà F., Nobili F., Vernieri F., Ursini F., Mundi C., Frisoni G.B., Rossini P.M. Cortical sources of resting state electroencephalographic alpha rythms deteriorate across time in subjects with amnesic mild cognitive impairment. Neurobiol. Aging, 35(1): 130-142, 2014.
Behrmann M., Geng J.J., Shomstein S. Parietal cortex and attention. Curr. Opin. Neurobiol., 14(2): 212-217, 2004.
Bekinschtein T.A., Dehaene S., Rohaut B., Tadel F., Cohen L., Naccache L. Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. U.S.A., 106: 1672-1677, 2009.
Bendixen A. Predictability effects in auditory scene analysis: a review. Front. Neurosci., 8: 60, 2014.
Bledowski C., Prvulovic D., Hoechstetter K., Scherg M., Wibral M., Goebel R., Linden D.E.J. Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J. Neurosci., 24(42): 9353-9360, 2004.
Bonfiglio L., Olcese U., Rossi B., Frisoli A., Arrighi P., Greco G., Carozzo S., Andre P., Bergamasco M., Carboncini M.C. Cortical source of blink-related delta oscillations and their correlation with levels of consciousness. Hum. Brain Mapp., 34: 2178-2189, 2013.
Bonfiglio L., Piarulli A., Olcese U., Andre P., Arrighi P., Frisoli A., Rossi B., Bergamasco M., Carboncini M.C. Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome. PLoS One, 9: e93252, 2014.
Carboncini M.C., Piarulli A., Virgillito A., Arrighi P., Andre P., Tomaiuolo F., Frisoli A., Bergamasco M., Rossi B., Bonfiglio L. A case of post-traumatic minimally conscious state reversed by midazolam: clinical aspects and neurophysiological correlates. Restor. Neurol. Neurosci., 32(6): 767-787, 2014.
Carrion R.E. and Bly B.M. The effects of learning on event-related potential correlates of music expectancy. Psychophysiology, 45(5): 759-775, 2008.
Clemens B., Bessenyei M., Fekete I., Puskás S., Kondákor I., Tóth M., Hollódy K. Theta EEG source localization using LORETA in partial epilepsy patients with and without medication. Clin. Neurophysiol., 121(6): 848-858, 2010.
Coull J.T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuropimaging and psychopharmacology. Prog. Neurobiol., 55: 343-361, 1998.
Cruse D., Beukema S., Chennu S., Malins J.G., Owen A.M., McRae K. The reliability of the N400 in single subjects: implications for patients with disorders of consciousness. Neuroimage Clin., 4: 788-799, 2014.
Daltrozzo J. and Schön D. Conceptual processing in music as revealed by N400 effects on words and musical targets. J. Cogn. Neurosci., 21(10): 1882-1892, 2009a.
Daltrozzo J. and Schön D. Is conceptual processing in music automatic? An electrophysiological approach. Brain Res., 1270: 88-94, 2009b.
Delorme A. and Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods, 134: 9-21, 2004.
Duncan C.C., Barry R.J., Connolly J.F., Fischer C., Michie P.T., Naatanen R., Polich J., Reinvang I., Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol., 120: 1883-1908, 2009.
Federmeier K.D., Wlotko E.W., De Ochoa-Dewald E., Kutas M. Multiple effects of sentential constraint on word processing. Brain Res., 1146: 75-84, 2007.
Fedorenko E., Patel A., Casasanto D., Winawer J., Gibson E. Structural integration in language and music: evidence for a shared system. Mem. Cognit., 37: 1, 2009.
Fitzpatrick S. Simplicity in the philosophy of science. The Internet Encyclopedia of Philosophy, ISSN 2161-0002, http://www.iep.utm.edu/, November 24, 2014.
Friederici A.D. The brain basis of language processing: from structure to function. Physiol. Rev., 91: 1357-1392, 2011.
Gallagher A., Beland R., Vannasing P., Bringas M.L., Valdes Sosa P., Trujillo-Barreto N.J., Connolly J., Lassonde M. Dissociation of the N400 component between linguistic and non-linguistic processing: a source analysis study. World J. Neurosci., 4: 25-39, 2014.
Grieser-Painter J. and Koelsch S. Can out-of-context musical sounds convey meaning? An ERP study on the processing of meaning in music. Psychophysiology, 48: 645-655, 2011.
Gusnard D.A. and Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci., 2: 685-694, 2001.
Holcomb P.J. Automatic and attentional processing: an event-related brain potential analysis of semantic priming. Brain Lang., 35(1): 66-85, 1988.
Harrison A.H. and Connolly J.F. Finding a way in: a review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness. Neurosci. Biobehav. Rev., 37(8): 1403-1419, 2013.
Hyvärinen A. and Oja E. Independent component analysis: algorithms and applications. Neur. Netw., 13: 411-430, 2000.
Janata P. ERP measures assay the degree of expectancy violation of harmonic contexts in music. J. Cogn. Neurosci., 7(2): 153-164, 1995.
Kayser J. and Tenke C.E. In search of the Rosetta Stone for scalp EEG: converging on reference-free techniques. Clin. Neurophysiol., 121: 1973-1975, 2010.
Koelsch S., Gunter T., Friederici A.D., Schröger E. Brain indices of music processing: “nonmusicians” are musical. J Cogn Neurosci., 12(3): 520-541, 2000.
Koelsch S., Gunter T.C., von Cramon D.Y., Zysset S., Lohmann G., Friederici A.D. Bach speaks: a cortical "language-network“ serves the processing of music. Neuroimage, 17(2): 956-966, 2002.
Koelsch S., Kasper E., Sammler D., Schulze K., Gunter T.C., Friederici A.D. Music, language, and meaning: brain signatures of semantic processing. Nat. Neurosci., 7: 302-307, 2004.
Koelsch S. Investigating emotion with music: neuroscientific approaches. Ann. N. Y. Acad. Sci., 1060: 412-418, 2005.
Koelsch S., Fritz T., Schulze K., Alsop D., Schlaug G. Adults and children processing music: an fMRI study. Neuroimage, 25: 1068-1076, 2005.
Koelsch S., Kilches S., Steinbeis N., Schelinski S. Effects of unexpected chords and performer’s expression on brain responses and electrodermal activity. PLoS One, 3(7): e2631, 2008.
Koelsch S. Toward a neural basis of music-evoked emotions. Trends Cogn. Sci., 14: 131-137, 2010.
Koelsch S. Toward a neural basis of music perception – a review and updated model. Front. Psychol., 2: 110, 2011a.
Koelsch S. Toward a neural basis of processing musical semantics. Phys. Life Rev., 8: 89-105, 2011b.
Kutas M. and Federmeier K.D. Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn. Sci., 12: 463-470, 2000.
Kutas M. and Federmeier K.D. N400. Scholarpedia, 4(10): 7790, 2009.
Kutas M. and Federmeier K.D. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol., 62: 621-647, 2011.
Loui P., Grent-‘t-Jong T., Torpey D., Woldorff M. Effects of attention on the neural processing of harmonic syntax in Western music. Cogn. Brain Res., 25: 678-687, 2005.
Maess B., Koelsch S., Gunter T.C., Friederici A.D. Musical syntax is processed in the area of Broca: an MEG study. Nat. Neurosci., 4: 540-545, 2001.
Makeig S., Bell A.J., Jung T.P., Sejnowski T.J. Independent component analysis of electroencephalographic data. pp. 145-151. In: Touretzky D., Mozer M., and Hasselmo M. (Eds.) Advances in neural information processing systems Vol. 8. Cambridge MA, The MIT Press, 1996.
Meerwijk E.L., Ford J.M., Weiss S.J. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging Behav., 7(1): 1-14, 2013.
Michel C.M. and He B. EEG mapping and source imaging. pp. 1179-1202. In: Schomer D.L. and Lopes da Silva F.H. (Eds.) Niedermeyer’s electroencephalography. Philadelphia, Wolters Kluwer, 2011.
Miranda R.A. and Ullman M.T. Double dissociation between rules and memory in music: an event-related potential study. Neuroimage, 38(2): 331-345.
Nichols T.E. and Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp., 15(1): 1-25, 2002.
O’Kelly J., James L., Palaniappan R., Taborin J., Fachner J., Magee W.L. Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states. Front. Hum. Neurosci., 7: 884, 2013.
Pascual-Marqui R.D., Michel M.C., Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 18: 49-65, 1994.
Pascual-Marqui R.D. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol., 24(Suppl. D): 5-12, 2002.
Patel A., Gibson E., Ratner J., Besson M., Holcomb P. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci., 10: 717-733, 1998.
Patel A. Language, music, syntax and the brain. Nat. Neurosci., 6: 674-681, 2003.
Patel A. Music, language, and the brain. New York, Oxford University Press, 2008.
Pearce M. and Rohrmeier M. Music cognition and the cognitive sciences. Top. Cogn. Sci., 4: 468-484, 2012.
Picton T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol., 9(4): 456-479, 1992.
Picton T.W., Bentin S., Berg P., Donchin E., Hillyard S.A., Johnson R., Miller G.A., Ritter W., Ruchkin D.S., Rugg M.D., Taylor M.J. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37: 127-152, 2000.
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol., 118(10): 2128-2148, 2007.
Polich J. and Criado J.R. Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol., 60: 172-185, 2006.
Polich J. and Kok A. Cognitive and bilogical determinants of P300: an iintegrative review. Biol. Psychol., 41: 103-146, 1995.
Qin Y., Xu P., Yao D. A comparative study of different references for EEG dafault mode network: the use of the infinity reference. Clin. Neurophysiol., 121: 1981-1991, 2010.
Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA, 98: 676-682, 2001.
Rankin K.P., Salazar A., Gorno-Tempini M.L., Sollberger M., Wilson S.M., Pavlic D., Stanley C.M., Glenn S., Weiner M.W., Miller B.L. Detecting sarcasm from paralinguistic cues: anatomic and cognitive correlates in neurodegenerative disease. Neuroimage, 47(4): 2005-2015, 2009.
Rollnik J.D. and Altenmüller E. Music in disorders of consciousness. Front. Neurosci., 8: 190, 2014.
Signorino M., D’Acunto S., Angeleri F., Pietropaoli P. Eliciting P300 in comatose patients. Lancet, 345(8944): 255-256, 1995.
Steinbeis N. and Koelsch S. Comparing the processing of music and language meaning using EEG and fMRI provides evidence for similar and distinct neural representation. PLoS One, 3(5): e2226, 2008a.
Steinbeis N. and Koelsch S. Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cereb. Cortex, 18: 1169, 2008b.
Steinbeis N. and Koelsch S. Affective priming effects of musical sounds on the processing of word meaning. J. Cogn. Neurosci., 23: 604-621, 2011.
Steppacher I., Eickhoff S., Jordanov T., Kaps M., Witzke W., Kissler J. N400 predicts recovery from disorders of consciousness. Ann. Neurol., 73(5): 594-602, 2013.
Talairach J. and Tournoux P. Co-planar stereotaxic atlas of the human brain Vol. 147. New York, Thieme, 1988.
Towle V.L., Bolanos J., Suarez D., Tan K., Grzeszczuk R., Levin D.N., Cakmur R., Frank S.A., Spire J.P. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol., 86: 1-6, 1993.
Tillmann B., Janata P., Bharucha J. Activation of the inferior frontal cortex in musical priming. Brain Res. Cogn. Brain Res., 16: 145-161, 2003.
Volpe U., Mucci A., Bucci P., Merlotti E., Galderisi S., Maj M. The cortical generators of P3a and P3b: a LORETA study. Brain Res. Bull., 73(4-6): 220-230, 2007.
Wronka E., Kaiser J., Coenen A.M.L. Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiol. Exp. (Wars), 72: 51-64, 2012.
Yao D., Wang L., Arendt-Nielsen L., Chen A.C. The effect of reference choices on the spatio-temporal analysis of brain evoked potentials: the use of infinite reference. Comput. Biol. Med., 37(11): 1529-1538, 2007.
DOI: https://doi.org/10.4449/aib.v153i1.3629
Refbacks
- There are currently no refbacks.