The assessment of somatosensory cortex plasticity during sleep deprivation by paired associative stimulation

Maurizio Gorgoni, Fabio Ferlazzo, Aurora D'Atri, Giulia Lauri, Michele Ferrara, Paolo Maria Rossini, Luigi De Gennaro

Abstract


Many animal studies suggest that during sleep deprivation (SD) synaptic strength should progressively increase, leading to the saturation of the ability to induce long-term potentiation (LTP). Nevertheless, direct evidences about the effects of sustained wakefulness on cortical plasticity in humans are still lacking. The aim of the present study was to assess changes in the ability to induce LTP-like mechanism in humans during a period of SD by means of a paired associative stimulation (PAS) protocol, which combines median nerve stimulation with transcranial magnetic stimulation (TMS) applied over the contralateral somatosensory cortex. During a 41-h SD protocol, 16 healthy subjects, defined as responders to the PAS protocol after a pre-selection session, were involved in 4 experimental sessions (11.00 a.m. and 11.00 p.m. of first and second day) with: a) pre-PAS somatosensory evoked potentials (SEPs) recordings; b) PAS protocol; c) post-PAS SEPs recordings. The effect of PAS on SEPs early components (N20-P25 complex) was assessed. During the first experimental session (without SD) no significant PAS effects on SEPs components amplitude have been found, and large intra- and inter-individual variability have been observed. A lack of significant changes has been observed also in the subsequent sessions. Our results index a low intra- and inter-individual reliability of the PAS protocol, suggesting particular caution when longitudinally evaluating the effect of this technique on cortical plasticity.


Keywords


Sleep deprivation; Paired associative stimulation; Synaptic homeostasis; Cortical plasticity; Somatosensory evoked potentials; Transcranial magnetic stimulation

Full Text:

PDF

References


Bergmann T.O., Molle M., Marshall L., Kaya-Yildiz L., Born J., Siebner H.R. A local signature of LTP- and LTD-like plasticity in human NREM sleep. Eur. J. Neurosci., 27: 2241-2249, 2008.

Bushey D., Tononi G., Cirelli C. Sleep and synaptic homeostasis: structural evidence in drosophila. Science, 332: 1576-1581, 2011.

Campbell I.G., Guinan M.J., Horowitz J.M. Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J. Neurophysiol., 88: 1073-1076, 2002.

Cirillo J., Lavender A.P., Ridding M.C., Semmler J.G. Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J. Physiol., 587: 5831–5842, 2009.

Civardi C., Boccagni C., Vicentini R., Bolamperti L., Tarletti R., Varrasi C., Monaco F., Cantello R. Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J. Neurol., Neuros. Psychiatry, 71: 809–812, 2001.

Conde V., Vollmann H., Sehm B., Taubert M., Villringer A., Ragert P. Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. Neuroimage, 60: 864-870, 2012.

Curcio G., Tempesta D., Scarlata S., Marzano C., Moroni F., Rossini P.M., Ferrara M., De Gennaro L. Validity of the Italian Version of the Pittsburgh Sleep Quality Index (PSQI). Neurol. Sci., 34: 511-519, 2013.

De Gennaro L., Marzano C., Veniero D., Moroni F., Fratello F., Curcio G., Ferrara M., Ferlazzo F., Novelli L., Pellicciari M.C., Bertini M., Rossini P.M.. Neurophysiological correlates of sleepiness: a combined TMS and EEG study. Neuroimage, 33: 1277-1287, 2007.

De Gennaro L., Fratello F., Marzano C., Moroni F., Curcio G., Tempesta D., Pellicciari M.C., Pirulli C., Ferrara M., Rossini P.M. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep. PLoS ONE, 3: e2483, 2008.

Di Lazzaro V., Dileone M., Pilato F., Profice P., Oliviero A., Mazzone P., Insola A., Capone F., Ranieri F., Tonali P.A. Associative motor cortex plasticity: direct evidence in humans. Cereb. Cortex, 19: 2326-2330, 2009a.

Di Lazzaro V., Dileone M., Profice P., Pilato F., Oliviero A., Mazzone P., Di Iorio R., Capone F., Ranieri F., Florio L., Tonali P.A. LTD-like plasticity induced by paired associative stimulation: direct evidence in humans. Exp. Brain Res., 194: 661-664, 2009b.

Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science, 332: 1571–1576, 2011.

Durmer J.S. and Dinges D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol., 25: 117-129, 2005.

Fratello F., Veniero D., Curcio G., Ferrara M., Marzano C., Moroni F., Pellicciari M.C., Bertini M., Rossini P.M., De Gennaro L. Modulation of corticospinal excitability by paired associative stimulation: reproducibility of effects and intraindividual reliability. Clin. Neurophysiol., 117: 2667–2674, 2006.

Gais S., Plihal W., Wagner U., Born J. Early sleep triggers memory for early visual discrimination skills. Nat. Neurosci., 3: 1335–1339, 2000.

Gais S. and Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn. Mem., 11: 679–685, 2004.

Gorgoni M., Ferlazzo F., Moroni F., D’Atri A., Donarelli S., Fanelli S., Gizzi Torriglia I., Lauri G., Ferrara M., Marzano C., Rossini P.M., Bramanti P., De Gennaro L. Sleep deprivation affects somatosensory cortex excitability as tested through median nerve stimulation. Brain Stim., 7: 732-739, 2014a.

Gorgoni M., Ferlazzo F., Ferrara M., Moroni F., D’Atri A., Fanelli S., Gizzi Torriglia I., Lauri G., Marzano C., Rossini P.M., De Gennaro L. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med., 15: 1132-1139, 2014b.

Huber R., Ghilardi M.F., Massimini M., Tononi G. Local sleep and learning. Nature, 430: 78–81, 2004.

Huber R., Ghilardi M.F., Massimini M., Ferrarelli F., Riedner B.A., Peterson M.J., Tononi G. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci., 9: 1169 –1176, 2006.

Huber R., Esser S.K., Ferrarelli F., Massimini M., Peterson M.J., Tononi G. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS ONE, 2: e276, 2007.

Huber R., Maatta S., Esser S.K., Sarasso S., Ferrarelli F., Watson A., Ferreri F., Peterson M.J., Tononi G.. Measures of cortical plasticity after transcranical paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J. Neurosci., 28: 7911-7918, 2008.

Huber R., Mäki H., Rosanova M., Casarotto S., Canali P., Casali A.G., Tononi G., Massimini M. Human cortical excitability increases with time awake. Cereb. Cortex, 23: 332-338, 2013.

Karabanov A., Ziemann U., Hamada M., George M.S., Quartarone A., Classen J., Massimini M., Rothwell J., Siebner H.R. Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation. Brain Stim., 8: 442-454, 2015.

Kopp C., Longordo F., Nicholson J.R., Luthi A. Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J. Neurosci., 26: 12456–12465, 2006.

Korchounov A. and Ziemann U. Neuromodulatory neurotrasmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study. Neuropsychopharmacology, 36: 1894-1902, 2011.

Kreuzer P., Langguth B., Popp R., Raster R., Busch V., Frank E., Hajak G., Landgrebe M. Reduced intra-cortical inhibition after sleep deprivation: a transcranial magnetic stimulation study. Neurosci. Lett., 493: 63-66, 2011.

Kriváneková L., Lu M.K., Bliem B., Ziemann U. Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex. Eur. J. Neurosci., 34: 1292-1300, 2011.

Litvak V., Zeller D., Oostenveld R., Maris E., Cohen A., Schramm A., Gentner R., Zaaroor M., Pratt H., Classen J. LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behavior. Eur. J. Neuorsci., 25: 2862-2874, 2007.

Liu Z.W, Faraguna U., Cirelli C., Tononi G., Gao X.B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci., 30: 8671-8675, 2010.

López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stim., 7: 372-380, 2014.

Manganotti P., Palermo A., Patuzzo S., Zanette G., Fiaschi A. Decrease of cortical excitability in human subjects after sleep deprivation. Neurosci. Lett., 304: 153–156, 2001.

Manganotti P., Bongiovanni L.G., Fuggetta G., Zanette G., Fiaschi A. Effects of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic epilepsy: a combined transcranial magnetic stimulation and EEG study. J. Neurol. Neuros. Psychiatry, 77: 56–60, 2006.

Maquet P. The role of sleep in learning and memory. Science, 294: 1048–1052, 2001.

Mariorenzi R., Zarola F., Caramia M.D., Paradiso C., Rossini P.M. Noninvasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans. Electroenceph. Clin. Neurophysiol., 81: 90–101, 1991.

Mascetti L., Muto V., Matarazzo L., Foret A., Ziegler E., Albouy G., Sterpenich V., Schmidt C., Degueldre C., Leclercq Y., Phillips C., Luxen A., Vandewalle G., Vogels R., Maquet P., Balteau E. The impact of visual perceptual learning on sleep and local slow-wave initiation. J. Neurosci., 33: 3323-3331, 2013.

McCoy J.G., and Strecker R.E. The cognitive cost of sleep lost. Neurobiol. Learn. Mem., 96: 564-582, 2011.

McDermott C.M., LaHoste G.J., Chen C., Musto A., Bazan N.G., Magee J.C. Sleep deprivation causes behavioral, synaptic and membrane excitability alterations in hippocampal neurons. J. Neurosci., 23: 9687–9695, 2003.

Murakami T., Sakuma K., Nomura T., Uemura Y., Hashimoto I., Nakashima K. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation. Exp. Brain Res., 184: 339-347, 2008.

Nitsche M.A., Roth A., Kuo M-F., Fischer A.K., Liebetanz D., Lang N., Tergau F., Paulus W. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J. Neurosci., 27: 3807-3812, 2007.

Pellicciari M.C., Miniussi C., Rossini P.M., De Gennaro L. Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. Neuroscience, 163: 266–276, 2009.

Ridding M.C. and Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol., 588: 2291-2304, 2010.

Rosenkranz K. and Rothwell J.C. Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur. J. Neurosci., 23: 822–829, 2006.

Rossini P.M., Barker A.T., Berardelli A., Caramia M.D., Caruso G., Cracco R.Q., Dimitrijević M.R., Hallett M., Katayama Y., Lücking C.H., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol., 91: 79–92, 1994.

Stefan K., Kunesch E., Cohen L.G., Benecke R., Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123: 572–584, 2000.

Stefan K., Kunesch E., Benecke R., Cohen L.G., Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. 543: 699–708, 2002.

Stefan K., Wycislo M., Classen J. Modulation of associative human motor cortical plasticity by attention. J. Neurophysiol., 92: 66–72, 2004.

Stickgold R. Sleep-dependent memory consolidation. Nature, 437: 1272–1278, 2005.

Tecchio F., Zappasodi F., Pasqualetti P., De Gennaro L., Pellicciari M.C., Ercolani M., Squitti R., Rossini P.M. Age dependence of primary motor cortex plasticity induced by Paired Associative Stimulation. Clin. Neurophysiol., 119: 675–682, 2008.

Terney D., Beniczky S., Varga E.T., Kéri S., Nagy H.G., Vécsei L. The effect of sleep deprivation on median nerve somatosensory evoked potentials. Neurosci. Lett., 383: 82–86, 2005.

Tononi G. and Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull., 62: 143-150, 2003.

Tononi G. and Cirelli C. Sleep function and synaptic homeostasis. Sleep Med. Rev., 10: 49-62, 2006.

Tononi G. and Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81: 12-34, 2014.

Vyazovskiy V.V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci., 11: 200–208, 2008.

Vyazovskiy V.V., Olcese U., Lazimy Y.M., Faraguna U., Esser S.K., Williams J.C., Cirelli C., Tononi G. Cortical firing and sleep homeostasis. Neuron, 63: 865-878, 2009.

Vyazovskiy V.V., Olcese U., Cirelli C., Tononi G. Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats. J. Sleep Res., 22: 264-271, 2013.

Walker M.P. Cognitive consequences of sleep and sleep loss. Sleep Med., 9 (Suppl. 1): S29-S34, 2008.

Walker M.P. and Stickgold R. Sleep-dependent learning and memory consolidation. Neuron, 44: 121–133, 2004.

Wassermann E.M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr. Clin. Neurophysiol., 108: 1–16, 1998.

Wischnewski M. and Schutter D.J. Efficacy and time course of paired associative stimulation in cortical plasticity: implications for neuropsychiatry. Clin. Neurophysiol., DOI: 10.1016/j.clinph.2015.04.072, 2015.

Wolters A., Sandbrink F., Schlottmann A., Kunesch E., Stefan K., Cohen L.G., Benecke R., Classen J. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol., 89: 2339–2345, 2003.

Wolters A., Schmidt A., Schramm A., Zeller D., Naumann M., Kunesch E., Benecke R., Reiners K., Classen J. Timing-dependent plasticity in human primary somatosensory cortex. J. Physiol., 565: 1039–1052, 2005.

Ziemann U., Iliać T.V., Pauli C., Meintzschel F., Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J. Neurosci., 24: 1666-1672, 2004.




DOI: https://doi.org/10.4449/aib.v153i2-3.3943

Refbacks

  • There are currently no refbacks.