Linking Sleep Slow Oscillations with consciousness theories: new vistas on Slow Wave Sleep unconsciousness

Angelo Gemignani, Danilo Menicucci, Marco Laurino, Andrea Piarulli, Francesca Mastorci, Laura Sebastiani, Paolo Allegrini


We review current models of consciousness in the context of wakefulness and sleep. We show that recent results on Slow Wave Sleep, including our own works, naturally fit within consciousness models. In particular, Sleep Slow Oscillations, namely low-frequency (< 1Hz) oscillations, contain electrophysiological properties (up and down states) able to elicit and quench neural integration during Slow Wave Sleep. The physiological unconsciousness related to the Sleep Slow Oscillation derives from the interplay between spontaneous or evoked wake-like activities (up states) and half-a-second’s electrical silences (down states). Sleep Slow Oscillation induces unconsciousness via the formation of parallel and segregated neural activities.


Slow Wave Sleep; Sleep Slow Oscillation; Unconsciousness; Models of consciousness; Brain criticality

Full Text:



Allegrini P., Menicucci D., Bedini R., Fronzoni L., Gemignani A., Grigolini P., West Bj., Paradisi P. Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev. E, 80: 061914, 2009.

Allegrini P., Menicucci D., Bedini R., Gemignani A., Paradisi P. Complex intermittency blurred by noise: theory and application to neural dynamics. Phys. Rev. E, 82: 015103, 2010a.

Allegrini P., Paradisi P., Menicucci D., Gemignani A. Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front. Physiol. 1: 128, 2010b.

Allegrini P., Paradisi P., Menicucci D., Laurino M., Bedini R., Piarulli A., Gemignani A. Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace. Chaos, Solitons & Fractals, 55: 32-43, 2013.

Allegrini P., Paradisi P., Menicucci D., Laurino M., Piarulli A., Gemignani A. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states. Phys. Rev. E, in press.

Amzica F., Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol., 107:69-83, 1998a.

Amzica F., Steriade M. Cellular substrates and laminar profile of sleep K-complex. Neuroscience, 82:671, 1998b.

Amzica F., Steriade M. The functional significance of K-complexes. Sleep Med. Rev., 6: 139-149, 2002.

Baars, B.J. A cognitive theory of consciousness. 1988, Cambridge, UK: Cambridge University Press.

Baars B.J. How does a serial, integrated and very limited stream of consciousness emerge from a nervous system that is mostly unconscious, distributed, parallel and of enormous capacity? Ciba Found Symp., 174: 282-90; discussion 291-303, 1993.

Beggs J.M., Plenz D. Neuronal avalanches in neocortical circuits. J Neurosci., 23: 11167-11177, 2003.

Beggs J.M., Timme N. Being critical of criticality in the brain. Front Physiol., 3:163, 2012.

Boly M., Perlbarg V., Marrelec G., Schabus M., Laureys S., Doyon J., et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc. Natl. Acad. Sci., 109: 5856-5861, 2012.

Cahn B.R., Polich J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull., 132:180-211, 2006.

Carrier J., Viens I., Poirier G., Robillard R., Lafortune M., Vandewalle G., Martin N., Barakat M., Paquet J., Filipini D. Sleep slow wave changes during the middle years of life. Eur. J. Neurosci., 33: 758-766, 2011.

Chialvo D.R. Emergent complex neural dynamics. Nat. Phys., 6:744-750, 2010.

Crunelli V., Cope D.W., Hughes S.W. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium, 40: 175-190, 2006.

Crunelli V., Hughes S.W. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat. Neurosci., 13: 9-17, 2010.

Crunelli V., David F., Lőrincz M.L., Hughes S.W. The thalamocortical network as a single slow wave-generating unit. Curr. Opin. Neurobiol., 31: 72-80, 2015.

De Felipe J., Fariñas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol., 39: 563-607, 1992.

Destexhe A., Hughes S.W., Rudolph M., Crunelli V. Are corticothalamic 'up' states fragments of wakefulness? Trends Neurosci., 30: 334-342, 2007.

Edelman G.M., Gally J.A., Baars B.J. Biology of consciousness. Front. Psychol., 2: 4, 2011.

Edelman, G.M. Neural darwinism: the theory of neuronal group selection. 1987, New York: Basic Books.

Eschenko O., Magri C., Panzeri S., Sara S.J. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb. Cortex, 22: 426-435, 2012.

Esser S.K., Hill S.L., Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep, 30: 1617, 2007.

Faraguna U., Vyazovskiy V.V., Nelson A.B., Tononi G., Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J. Neurosci., 28: 4088-4095, 2008.

Feinberg T.E. Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution. Phys. Life Rev., 9: 13-34, 2012.

Ferri R., Rundo F., Bruni O., Terzano M.G., Stam C.J. The functional connectivity of different EEG bands moves towards small-world network organization during sleep. Clin. Neurophysiol., 119: 2026-2036, 2008.

Fröhlich F., Bazhenov M., Timofeev I., Steriade M., Sejnowski T.J. Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J. Neurosci., 26: 6153-6162, 2006.

Gell-Mann M. Consciousness, reduction, and emergence. Some remarks. Ann. N. Y. Acad. Sci., 929: 41-49, 2001.

Gemignani A., Laurino M., Provini F., Piarulli A., Barletta G., d'Ascanio P., Bedini R., Lodi R., Manners D.N., Allegrini P., Menicucci D., Cortelli P. Thalamic contribution to Sleep Slow Oscillation features in humans: a single case cross sectional EEG study in Fatal Familial Insomnia. Sleep Med., 13: 946-952, 2012.

Kadanoff L. P. Scaling laws for Ising models near Tc, Physics 2: 263, 1966.

Hanlon E.C., Vyazovskiy V.V., Faraguna U., Tononi G., Cirelli C. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies. Curr. Top Med. Chem., 11: 2472-2482, 2011.

Hughes S.W., Blethyn K.L., Cope D.W., Crunelli V. Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience, 110: 395-401, 2002.

James, W. The principles of psychology.1890, New York: H. Holt and Company.

Laurino M., Menicucci D., Piarulli A., Mastorci F., Bedini R., Allegrini P., Gemignani A. Disentangling different functional roles of evoked K-complex components: Mapping the sleeping brain while quenching sensory processing. Neuroimage, 86: 433-45, 2014.

Lemieux M., Chen J.Y., Lonjers P., Bazhenov M., Timofeev I. The impact of cortical deafferentation on the neocortical slow oscillation. J. Neurosci., 34: 5689-5703, 2014.

Lewis L.D., Weiner V.S., Mukamel E.A., Donoghue J.A., Eskandar E.N., Madsen J.R., et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. USA, 109: E3377–E3386, 2012.

Massimini M., Huber R., Ferrarelli F., Hill S., Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci., 24: 6862-6870, 2004.

Massimini M., Ferrarelli F., Huber R., Esser S.K., Singh H., Tononi G. Breakdown of cortical effective connectivity during sleep. Science, 309: 2228–2232, 2005.

Massobrio P., de Arcangelis L., Pasquale V., Jensen H.J., Plenz D. Criticality as a signature of healthy neural systems. Front Syst Neurosci., 9: 22, 2015.

Menicucci D., Piarulli A., Allegrini P., Bedini R., Bergamasco M., Laurino M., Sebastiani L., Gemignani A. Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity. Int J Psychophysiol., 97: 99-107, 2015.

Menicucci D., Piarulli A., Allegrini P., Laurino M., Mastorci F., Sebastiani L., Bedini R., Gemignani A. Fragments of wake-like activity frame down-states of sleep slow oscillations in humans: new vistas for studying homeostatic processes during sleep. Int J Psychophysiol., 89: 151-157, 2013.

Menicucci D., Piarulli A., Debarnot U., d'Ascanio P., Landi A., Gemignani A. Functional structure of spontaneous sleep slow oscillation activity in humans. PLoS One., 4: e7601, 2009.

Mölle M., Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res.,193: 93-110, 2011.

Murphy M., Huber R., Esser S., Riedner B.A., Massimini M., Ferrarelli F., Ghilardi M.F., Tononi G. The cortical topography of local sleep. Curr Top Med Chem., 11: 2438-2446, 2011.

Oizumi M., Albantakis L., Tononi G. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. PLoS Comput Biol., 10: e1003588, 2014.

Piarulli A., Menicucci D., Gemignani A., Olcese U., d'Ascanio P., Pingitore A., Bedini R., Landi A. Likeness-based detection of sleep slow oscillations in normal and altered sleep conditions: application on low-density EEG recordings. IEEE Trans Biomed Eng., 57: 363-372, 2010.

Rudolph M., Pelletier J.G., Paré D., Destexhe A. Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol., 94: 2805-2821, 2005.

Sanchez-Vives M.V., McCormick D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci., 3: 1027-1034, 2000.

Sanchez-Vivez M.V., Mattia M., Compte A., Perez-Zabalza M., Winograd M., Descalzo V.F., Reig R. Inhibitory modulation of cortical up states. J. Neurophysiol., 104: 1314.1324, 2010.

Sejnowski T.J., Destexhe A. Why do we sleep? Brain Res., 886: 208-223, 2000.

Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci., 17: 652-660, 2014.

Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101: 243-276, 2000.

Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137: 1087-1106, 2006.

Timofeev I., Chauvette S. Thalamocortical oscillations: local control of EEG slow waves. Curr. Top Med. Chem., 11: 2457-2471, 2011.

Timofeev I., Contreras D., Steriade M. Synaptic responsiveness of cortical and thalamic neurons during various phases of slow sleep oscillation in cat. J. Physiol. 494: 265-278, 1996.

Timofeev I., Grenier F., Bazhenov M., Sejnowski T.J., Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex, 10: 1185-1199, 2000.

Timofeev I., Grenier F., Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep–wake cycle. Proc. Natl. Acad. Sci. USA, 98: 1924-1929, 2001.

Tononi G., Koch C. The neural correlates of consciousness: an update. Ann. N. Y. Acad. Sci., 1124: 239-261, 2008.

Tononi G., Sporns O., Edelman G.M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A, 91: 5033-5037, 1994.

Tononi G. Consciousness as integrated information: a provisional manifesto. Biol. Bull., 215: 216-242, 2008.

Tononi G., Cirelli C. Sleep function and synaptic homeostasis. Sleep Med. Rev., 10: 49-62, 2006.

Turing A.M. Computing machinery and intellingence. Mind, 59: 433-460, 1950.

Vyazovskiy V.V., Olcese U., Lazimy Y.M., Faraguna U., Esser S.K., Williams J.C., Cirelli C., Tononi G. Cortical firing and sleep homeostasis. Neuron, 63: 865-878, 2009.

Vyazovskiy V.V., Riedner B.A., Cirelli C., Tononi G. Sleep homeostasis and cortical synchronization: II. A local "eld potential study of sleep slow waves in the rat. Sleep, 30:1631, 2007.

Ward L.M. The thalamic dynamic core theory of conscious experience. Conscious. Cogn., 20: 464-86, 2011.

Werner G. From brain states to mental phenomena via phase space transitions and renormalization group transformation: proposal of a theory. Cogn. Neurodyn., 6: 199-202, 2012.

Wilson M.T., Steyn-Ross D.A., Sleigh J.W., Steyn-Ross M.L., Wilcocks L.C., Gillies IP. The K-complex and slow oscillation in terms of a mean-field cortical model. J. Comput. Neurosci. 21: 243-257, 2006.

Zhu J., Jiang M., Yang M, Hou H., Shu Y. Membrane potential-dependent modulation of recurrent inhibition in rat neocortex. PLoS Biol. 9: e1001032, 2011.



  • There are currently no refbacks.