Open Access Open Access  Restricted Access Subscription or Fee Access

Protective effects of long-term lithium administration in a slowly progressive SMA mouse model

F. Biagioni, M. Ferrucci, L. Ryskalin, F. Fulceri, G. Lazzeri, M. T. Calierno, C. L. Busceti, R. Ruffoli, F. Fornai


In the present study we evaluated the long-term effects of lithium administration to a knock-out double transgenic mouse model (Smn-/-; SMN1A2G+/-; SMN2+/+) of Spinal Muscle Atrophy type III (SMA-III). This model is characterized by very low levels of the survival motor neuron protein, slow disease progression and motor neuron loss, which enables to detect disease-modifying effects at delayed time intervals. Lithium administration attenuates the decrease in motor activity and provides full protection from motor neuron loss occurring in SMA-III mice, throughout the disease course. In addition, lithium prevents motor neuron enlargement and motor neuron heterotopy and suppresses the occurrence of radial-like glial fibrillary acidic protein immunostaining in the ventral white matter of SMA-III mice. In SMA-III mice long-term lithium administration determines a dramatic increase of survival motor neuron protein levels in the spinal cord.

These data demonstrate that long-term lithium administration during a long-lasting motor neuron disorder attenuates behavioural deficit and neuropathology. Since low level of survival motor neuron protein is bound to disease severity in SMA, the robust increase in protein level produced by lithium provides solid evidence which calls for further investigations considering lithium in the long-term treatment of spinal muscle atrophy.


spinal muscle atrophy; survival motor neuron protein; spinal cord; motor activity; motor neuron degeneration; motor neuron heterotopy; motor neuron size; radial glia; hindlimb extension reflex; Paw Grip Endurance test

Full Text:



Barr M. and Hamilton J.D. A quantitative study of certain morphological changes in spinal motor neurons during axon reaction. J. Comp. Neurol., 89: 93-121, 1984.

Bebee T.W., Dominguez C.E., Samadzadeh-Tarighat S., Akehurst K.L., Chandler D.S. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum. Mol. Genet., 21: 4301-4313, 2012.

Burghes A.H. and Beattie C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci., 10: 597-609, 2009.

Calderó J., Brunet N., Tarabal O., Piedrafita L., Hereu M., Ayala V., Esquerda J.E. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience, 165: 1353-1369, 2010.

Campbell L., Potter A., Ignatius J., Dubowitz V., Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am. J. Hum. Genet., 61: 40-50, 1997.

Carriedo S.G., Yin H.Z., Lamberta R., Weiss J.H. In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+ dependent. Neuroreport, 6: 945-948, 1995.

Carriedo S.G., Yin H.Z., Weiss J.H. Motor neurons are selectively vulnerable to AMPA/Kainate receptor-mediated injury in vitro. J. Neurosci., 16: 4069-4079, 1996.

Chen P.C., Gaisina I.N., El-Khodor B.F., Ramboz S., Makhortova N.R., Rubin L.L., Kozikowski A.P. Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, that Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy. ACS Chem. Neurosci., 3: 5-11, 2012a.

Chen S., Zhang X., Song L., Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol., 22: 110-116, 2012b.

Chi L., Gan L., Luo C., Lien L., Liu R. Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev., 16: 579-588, 2007.

Chi L., Ke Y., Luo C., Li B.L., Gozal D., Kalyanaraman B., Liu R. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells, 24: 34-43, 2006.

Chiu C.T., Wang Z., Hunsberger J.G., Chuang D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev., 65: 105-142, 2013.

Cifuentes-Diaz C., Nicole S., Velasco M.E., Borra-Cebrian C., Panozzo C., Frugier T., Millet G., Roblot N., Joshi V., Melki J. Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model. Hum. Mol. Gen., 11: 1439-1447, 2002.

Coovert D.D., Le T.T., McAndrew P.E., Strasswimmer J., Crawford T.O., Mendell J.R., Coulson S.E., Coulson S.E., Androphy E.J., Prior T.W., Burghes A.H. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet., 6: 1205-1214, 1997.

Cox L.E., Ferraiuolo L., Goodall E.F., Heath P.R., Higginbottom A., Mortiboys H., Hollinger H.C., Hartley J.A., Brockington A., Burness C.E., Morrison K.E., Wharton S.B., Grierson A.J., Ince P.G., Kirby J., Shaw P.J. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One, 5: e9872, 2010.

Crawford T.O., Pardo C.A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis., 3: 97-110, 1996.

Crippa V., Carra S., Rusmini P., Sau D., Bolzoni E., Bendotti C., De Biasi S., Poletti A. A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy, 6: 958-960, 2010a.

Crippa V., Sau D., Rusmini P., Boncoraglio A., Onesto E., Bolzoni E., Galbiati M., Fontana E., Marino M., Carra S., Bendotti C., De Biasi S., Poletti A. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum. Mol. Genet., 19: 3440-3456, 2010b.

Dachs E., Piedrafita L., Hereu M., Esquerda J.E., Calderó J. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience, 250: 417-433, 2013.

Feng H.L., Leng Y., Ma C.H., Zhang J., Ren M., Chuang D.M. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience, 155: 567-572, 2008.

Fernagut P.O., Diguet E., Labattu B., Tison F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J. Neurosci. Methods, 113: 123-130, 2002.

Ferrucci M., Spalloni A., Bartalucci A., Cantafora E., Fulceri F., Nutini M., Longone P., Paparelli A., Fornai F. A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Neurobiol. Dis., 37: 370-383, 2010.

Fornai F., Longone P., Cafaro L., Kastsiuchenka O., Ferrucci M., Manca M.L., Lazzeri G., Spalloni A., Bellio N., Lenzi P., Modugno N., Siciliano G., Isidoro C., Murri L., Ruggieri S., Paparelli A. Lithium delays progression of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA, 105: 2052-2057, 2008a.

Fornai F., Longone P., Ferrucci M., Lenzi P., Isidoro C., Ruggieri S., Paparelli A. Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. Autophagy, 4: 527-530, 2008b.

Fulceri F., Bartalucci A., Paparelli S., Pasquali L., Biagioni F., Ferrucci M., Ruffoli R., Fornai F. Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Brain Res., 1442: 66-75, 2012.

Fulceri F., Ferrucci M., Lazzeri G., Paparelli S., Bartalucci A., Tamburini I., Paparelli A., Fornai F. Autophagy activation in glutamate-induced motor neuron loss. Arch. Ital. Biol., 149: 101-111, 2011.

Hadano S., Otomo A., Kunita R., Suzuki-Utsunomiya K., Akatsuka A., Koike M., Aoki M., Uchiyama Y., Itoyama Y., Ikeda J.E. Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PLoS One, 5: e9805, 2010.

Hall L.L. and Borke, R.C. A morphometric analysis of the somata and organelles of regenerating hypoglossal motoneurons from the rat. J. Neurocytol., 17: 835-844, 1988.

Hetz C., Thielen P., Matus S., Nassif M., Court F., Kiffin R., Martinez G., Cuervo A.M., Brown R.H., Glimcher L.H. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev., 23: 2294-2306, 2009.

Il’ina N.A., Antipova R.I., Khokhlov A.P. Use of lithium carbonate to treat Kugelberg--Welander spinal amyotrophy. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova, 80: 1657-1660, 1980.

Kariya S., Re D.B., Jacquier A., Nelson K., Przedborski S., Monani U.R. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum. Mol. Genet., 21: 3421-3434, 2012.

Katona I., Zhang X., Bai Y., Shy M.E., Guo J., Yan Q., Hatfield J., Kupsky W.J., Li J. Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur. J. Neurosci., 33: 1401-1410, 2011.

Kim S.J., Roy R.R., Kim J.A., Zhong H., Haddad F., Baldwin K.M., Edgerton VR. Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure. J. Appl. Physiol., 105: 1246-1254, 2008.

Klein P.S. and Melton D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA, 93: 8455-8459, 1996.

Laird F.M., Farah M.H., Ackerley S., Hoke A., Maragakis N., Rothstein J.D., Griffin J., Price D.L., Martin L.J., Wong P.C. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci., 28: 1997-2005, 2008.

Lee A.J.H., Awano T., Park G.H., Monani U.R. Limited phenotypic effects of selectively augmenting the SMN protein in the neurons of a mouse model of severe spinal muscular atrophy. PLoS One, 7: e46353, 2012.

Lefebvre S., Burglen L., Reboullet S., Clermont O., Burlet P., Viollet, L., Benichou B., Cruaud C., Millasseau P., Zeviani M., Le Paslier D., Frézal J., Cohen D., Weissenbach J., Munnich A., Melki J. . Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80: 155-165, 1995.

Lefebvre S., Burlet P., Liu Q., Bertrandy S., Clermont O., Munnich A., Dreyfuss G., Melki J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet., 16: 265-269, 1997.

Madeo F., Eisenberg T., Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes Dev., 23: 2253-2259, 2009.

Makhortova N.R., Hayhurst M., Cerqueira A., Sinor-Anderson A.D., Zhao W.N., Heiser P.W., Arvanites A.C., Davidow L.S., Waldon Z.O., Steen J.A., Lam K., Ngo H.D., Rubin L.L. A screen for regulators of survival of motor neuron protein levels. Nat. Chem. Biol., 7, 544-552, 2011.

Martin L.J., Liu Z.P., Chen K., Price A.C., Pan Y., Swaby J.A., Golden W.C. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J. Comp. Neurol., 500: 20-46, 2007.

Monani U.R., Coovert D.D., Burghes A.H. Animal models of spinal muscular atrophy. Hum. Mol. Genet., 9: 2451-2457, 2000.

Monani U.R., Pastore M.T., Gavrilina T.O., Jablonka S., Le T.T., Andreassi C., DiCocco J.M., Lorson C., Androphy E.J., Sendtner M., Podell M., Burghes A.H. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J. Cell. Biol., 160: 41-52, 2003.

Monani U.R. Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 48: 885-896, 2005.

Montie H.L., Cho M.S., Holder L., Liu Y., Tsvetkov A.S., Finkbeiner S., Merry D.E. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 18: 1937-1950, 2009.

Munsat T.L., Davies K.E. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul. Disord., 2: 423-428, 1992.

Otomo A., Pan L., Hadano S. Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron disease. Neurol. Res. Int., 498428, 2012.

Palazzolo I., Burnett B.G., Young J.E., Brenne P.L., La Spada A.R., Fischbeck K.H., Howell B.W., Pennuto M. Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum. Mol. Genet., 16: 1593-1603, 2007.

Palazzolo I., Stack C., Kong L., Musaro A., Adachi H., Katsuno M., Sobue G., Taylor J.P., Sumner C.J., Fischbeck K.H., Pennuto M. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron, 63: 316-328, 2009.

Pasquali L., Longone P., Isidoro C., Ruggieri S., Paparelli A., Fornai F. Autophagy, lithium, and amyotrophic lateral sclerosis. Muscle Nerve, 40: 173-194, 2009.

Pasquali L., Busceti C.L., Fulceri F., Paparelli A., Fornai F. Intracellular pathways underlying the effects of lithium. Behav. Pharmacol., 21: 473-492, 2010.

Penas C., Font-Nieves M., Forés J., Petegnief V., Planas A., Navarro X., Casas C. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ., 18: 1617-1627, 2011.

Penet M.F., Laigle C., Le Fur Y., Confort-Gouny S., Heurteaux C., Cozzone P.J., Viola A. In vivo characterization of brain morphometric and metabolic endophenotypes in three inbred strains of mice using magnetic resonance techniques. Behav. Genet., 36:, 732-744, 2006.

Pizzasegola C., Caron I., Daleno C., Ronchi A., Minoia C., Carrì M.T., Bendotti C. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph. Lateral Scler., 10: 221-228, 2009.

Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol., 170: 1101-1111, 2005.

Sarkar S. and Rubinsztein D.C. Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy, 2: 132-134, 2006.

Schaeffer V., Lavenir I., Ozcelik S., Tolnay M., Winkler D.T., Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 135: 2169-2177, 2012.

Schaffner A.E., St. John P.A., Barker J.L. Fluorescence-activated cell sorting of embryonic mouse and rat motor neurons and their long-term survival in vitro. J. Neurosci., 7: 3088-3104, 1987.

Shan X., Chiang P.M., Price D.L., Wong P.C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc. Natl. Acad. Sci. USA, 107: 16325-16330, 2010.

Shimada K., Motoi Y., Ishiguro K., Kambe T., Matsumoto S., Itaya M., Kunichika M., Mori H., Shinohara A., Chiba M., Mizuno Y., Ueno T., Hattori N. Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol. Dis., 46: 101-108, 2012.

Shin J.H., Cho S.I., Lim H.R., Lee J.K., Lee Y.A., Noh J.S., Joo IS, Kim KW, Gwag BJ. Concurrent administration of Neu2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis. Mol. Pharmacol., 71: 965-975, 2007.

Simic G. Pathogenesis of proximal autosomal recessive spinal muscular atrophy. Acta Neuropathol., 116: 223-234, 2008.

Simic G., Mladinov M., Simic D.S., Milosevic N.J., Islam A., Pajtak A., Barisic N., Sertic J., Lucassen P.J., Hof P.R., Kruslin B. Abnormal motoneuron migration, differentiation and axon outgrowth in spinal muscular atrophy. Acta Neuropathol., 115: 313-326, 2008.

Simon C.M., Jablonka S., Ruiz R., Tabares L., Sendtner M. Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Hum. Mol. Genet., 19: 973-986, 2010.

Song C.Y., Guo J.F., Liu Y., Tang B.S. Autophagy and Its Comprehensive Impact on ALS. Int. J. Neurosci., 122: 695-703, 2012.

Su H., Chu T.H., Wu W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp. Neurol., 206: 296-307, 2007.

Su H., Zhang W.M., Guo J.S., Guo A.C., Yuan Q.J., Wu W.T. Lithium enhances the neuronal differentiation of neural progenitor cells in vitro and after transplantation into the avulsed ventral horn of adult rats through the secretion of brain-derived neurotrophic factor. J. Neurochem., 108: 1385-1398, 2009.

Tamai K., Toyoshima M., Tanaka N., Yamamoto N., Owada Y., Kiyonari H., Murata K., Ueno Y., Ono M., Shimosegawa T., Yaegashi N., Watanabe M., Sugamura K. Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. Am. J. Pathol., 173: 1806-1817, 2008.

Tanaka F., Katsuno M., Banno H., Suzuki K., Adachi H., Sobue, G. Current status of treatment of spinal and bulbar muscular atrophy. Neural. Plast., 2012: 369284, 2012.

Tian F., Morimoto N., Liu W., Ohta Y., Deguchi K., Miyazaki K., Abe K. In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis. Autophagy, 7: 985-992, 2011.

Tsai L.K., Tsai M.S., Ting C.H., Li H. Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J. Mol. Med. (Berl), 86: 1243-1254, 2008.

Turner B.J., Bäumer D., Parkinson N.J., Scaber J., Ansorge O., Talbot K. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neurosci., 9: 104, 2008.

Vargová L., Jendelová P., Chvátal A., Syková E. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. J. Cereb. Blood Flow Metab., 21: 1077-1089, 2001.

Veldink J.H., Kalmijn S., Van der Hout A.H., Lemmink H.H., Groeneveld G.J., Lummen C., Scheffer H., Wokke J.H., Van den Berg L.H. SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS. Neurology, 65: 820-825, 2005.

Wang I.F., Guo B.S., Liu Y.C., Wu C.C., Yang C.H., Tsai K.J., Shen C.K. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl. Acad. Sci. USA, 109: 15024-15029, 2012a.

Wang I.F., Tsai K.J., Shen C.K. Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy, 9: 239-240, 2012b.

Watson C., Paxinos G., Kayaloglu G., Heise C. The spinal cord. A Christopher and Dana Reeve Foundation Text and Atlas. 2009, San Diego: Academic Press.

Wirth B., Brichta L., Hahnen E. Spinal muscular atrophy: from gene to therapy. Semin. Pediatr. Neurol., 13: 121-131, 2006.

Yamazaki T., Chen S., Yu Y., Yan B., Haertlein T.C., Carrasco M.A., Tapia J.C., Zhai B., Das R., Lalancette-Hebert M., Sharma A., Chandran S., Sullivan G., Nishimura A.L., Shaw C.E., Gygi S.P., Shneider N.A., Maniatis T., Reed R. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep., 2: 799-806, 2012.

Zou T., Yang X., Pan D., Huang J., Sahin M., Zhou J. SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress. Cell. Mol. Neurobiol., 31: 541-550, 2011.



  • There are currently no refbacks.