Open Access Open Access  Restricted Access Subscription or Fee Access

Contextual fear conditioning modulates the gene expression over time

G. Federighi, G. Traina, R. Bernardi, E. Baldi, C. Bucherelli, R. Scuri


Contextual fear conditioning (CFC) is a quick cognitive test based on the association context-aversive stimulus in which a single training leads to a long-term memory. Previously, we showed that 2 days after conditioning the expression of the genes Napa, Pnf2, Casp3, Pdrg1, Ywhaz, Stmn1, Bpgm, were positively modulated in CFC rats respect to naïve rats, explor rats which had freely explored the experimental apparatus and SO rats to which the same number of aversive shocks used in CFC paradigm had been administered in the same CFC apparatus in less time to prevent the association between painful stimuli and apparatus, whereas the genes Actr3, Pea15 and Tiprl were more expressed in SO rats and Cplx1, Trim32 and Ran genes were more expressed in explor rats. At 2 days, Tomm20 gene expression resulted positively modulated in both CFC and explor rats. Herein, we have tested the expression of these genes for a period longer than 2 days, by monitoring the modulation of transcripts within 20 days after conditioning. The expression of the transcripts was assessed by qRT-PCR.

We found that three days after CFC only the genes Tiprl and Trim32 were positively modulated in CFC rats whereas the gene Tomm20 was negatively modulated in CFC rats as well as in SO and explor rats. Ten days after CFC, the expression of Trim32 was still positively modulated whereas the genes Tiprl and Tomm20 returned to the constitutive level, and the gene Ran was significantly more expressed in CFC rats than in naïve, SO and explor rats. Interestingly, 20 days after CFC, the genes Stmn1 and Tiprl again became significantly more expressed in CFC rats compared with naïve, SO and explor rats. 


contextual fear conditioning; gene expression; long-term memory; rat

Full Text:



Alberini C.M., Milekic M.H., Tronel S. Mechanisms of memory stabilization and de-stabilization. Cell. Mol. Life Sci., 63: 999-1008, 2006.

Alonso M., Vianna M.R., Depino A.M., Mello e Souza T., Pereira P., Szapiro G., et al. BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus, 12: 551-560, 2002.

Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R., Izquierdo I., Medina J.H. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron, 53: 261-277, 2007.

Bekinschtein P., Cammarota M., Medina J.H. BDNF and memory processing. Neuroph., 76: 677-683, 2014.

Benard G., Bellance N., James D., Parrone P., Fernandez H., Letellier T., et al. Mitochondrial bioenergetics and structural network organization. J. Cell. Sci., 120 (5): 838-848, 2007.

Calais J.B., Valvassori S.S., Resende W.R., Feier G., Athié M.C., Ribeiro S., et al. Long-term decrease in immediate early gene expression after electroconvulsive seizures. J. Neural. Transm., 120: 259-266, 2013.

Delettre C., Lenaers G., Griffoin J.M., Gigarel N., Lorenzo C., Belenguer P., et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet., 26 (2): 207-210, 2000.

Drivas G.T., Shih A., Coutavas E., Rush M.G., D'Eustachio P. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol. Cell. Biol., 10 (4): 1793-1798, 1990.

Dyrvig M., Christiansen S.H., Woldbye D.P., Lichota J. Temporal gene expression profile after acute electroconvulsive stimulation in the rat. Gene, 539: 8-14, 2014.

Dyrvig M., Hansen H.H., Christiansen S.H., Woldbye D.P., Mikkelsen J.D., Lichota J. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res. Bull., 88: 507-513, 2012.

Eckel-Mahan K.L. and Storm D.R. Circadian rhythms and memory: not so simple as cogs and gears. EMBO Rep., 10: 584-591, 2009.

Elfving B., Bonefeld B.E., Rosenberg R., Wegener G. Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse, 62: 662-670, 2008.

Fanselow M.S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res., 110 (1-2): 73-81, 2000.

Federighi G., Traina G., Macchi M., Ciampini C., Bernardi R., Baldi E., et al. Modulation of gene expression in contextual fear conditioning in the rat. PLoS One, 8: e80037, 2013.

Freitas N. and Cunha C. Mechanisms and signals for the nuclear import of proteins. Curr. Genomics, 10 (8): 550-557, 2009.

Frosk P., Weiler T., Nylen E., Sudha T., Greenberg C.R., Morgan K., et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am. J. Hum. Genet., 70 (3): 663-672, 2002.

Gage F.H. Mammalian neural stem cells. Science, 287(5457): 1433-1438, 2000.

Hahn S. and Schlenstedt G. Importin β-type nuclear transport receptors have distinct binding affinities for Ran-GTP. Biochem. Biophys. Res. Commun., 18;406(3): 383-8, 2011.

Hetzer M., Gruss O.J., Mattaj I.W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell. Biol., 4 (7): E177-184, 2002.

Hillje A.L., Beckmann E., Pavlou M.A., Jaeger C., Pacheco M.P., Sauter T., et al. The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front. Cell. Neurosci., 18;9: e75. doi: 10.3389/fncel.2015.00075, 2015.

Hillje A.L., Pavlou M.A., Beckmann E., Worlitzer M.M., Bahnassawy L., Lewejohann L., et al. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation. Cell Death Dis., 19;4: e976. doi: 10.1038/cddis.2013.487, 2013.

Hillje A.L., Worlitzer M.M., Palm T., Schwamborn J.C. Neural stem cells maintain their stemness through protein kinase C ζ-mediated inhibition of TRIM32. Stem Cells, 29 (9): 1437-1447, 2011.

Horn E.J., Albor A., Liu Y., El-Hizawi S., Vanderbeek G.E., Babcock M., et al. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis, 25 (2): 157-167, 2004.

Ji L.L., Tong L., Peng J.B., Jin X.H., Wei D., Xu B.K., et al. Changes in the expression of the vitamin D receptor and LVSCC A1C in the rat hippocampus submitted to single prolonged stress. Mol. Med. Rep., 9: 1165-1170, 2014.

Kann O. and Kovács R. Mitochondria and neuronal activity. Am. J. Physiol. Cell. Physiol., 292 (2): 641-657, 2007.

Laplante M. and Sabatini D.M. mTOR signaling in growth control and disease. Cell, 149 (2): 274-293, 2012.

Livak K.J. and Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods, 25: 402-408, 2001.

Phillips R.G., LeDoux J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci., 106 (2): 274-285, 1992.

Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., et al. The tripartite motif family identifies cell compartments. EMBO J., 20 (9): 2140-2151, 2001.

Ren M., Drivas G., D'Eustachio P., Rush M.G. Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis. J. Cell. Biol., 120 (2): 313-323, 1993.

Ruan C.S., Wang S.F., Shen Y.J., Guo Y., Yang C.R., Zhou F.H., et al. Deletion of TRIM32 protects mice from anxiety- and depression-like behaviors under mild stress. Eur. J. Neurosci., 40: 2680–2690, 2014.

Sacchetti B., Ambrogi Lorenzini C., Baldi E., Bucherelli C., Roberto M., Tassoni G., et al. Long-lasting hippocampal potentiation and contextual memory consolidation. Eur. J. Neurosci., 13: 2291-2298, 2001.

Sacchetti B., Ambrogi Lorenzini C., Baldi E., Tassoni G., Bucherelli C. Auditory thalamus, dorsal hippocampus, basolateral amygdala, and perirhinal cortex role in the consolidation of conditioned freezing to context and to acoustic conditioned stimulus in the rat. J. Neurosci., 19 (21): 9570-9578, 1999.

Schwamborn J.C., Berezikov E., Knoblich J.A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136 (5): 913-925, 2009.

Silverstone P.H. and Silverstone T. A review of acute treatments for bipolar depression. Int. Clin. Psychopharmacol., 19: 113-124, 2004.

Selfridge J.E., Wilkins H.M., E L, Carl S.M., Koppel S., Funk E., et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J. Bioener. Biomem., 47 (1): 1-11, 2015.

Takahashi T. Mechanisms underlying contextual fear learning. Commun. Integr. Biol., 4 (6): 726-727, 2011.

Zhang L., Feng D., Tao H., DE X., Chang Q., Hu Q. Increased stathmin expression strengthens fear conditioning in epileptic rats. Biomed. Rep., 3: 28-32, 2015.



  • There are currently no refbacks.