Open Access Open Access  Restricted Access Subscription or Fee Access

Combined therapy (Rho-A-kinase inhibitor and chitosan/collagen porous scaffold) provides a supportive environment for endogenous regenerative processes after spinal cord trauma

A. Stropkovska, A. Kisucka, K. Bimbova, M. Bacova, J. Galik, L. Medvecky, I. Sulla, M. Karasova, N. Lukacova

Abstract


Due to the complexity of pathological processes in spinal cord injury (SCI), it is increasingly recognized that combined strategies are more effective than single treatments. The aim of the present study was to enhance neural tissue regeneration and axon regrowth using Rho-A-kinase inhibitor (Y-27632) in a rat SCI model (Th9 compression) and to bridge the lesion with a chitosan/collagen porous scaffold (ChC-PS) applied two weeks after SCI. In addition, to see the synergic effect of Y-27632 and ChC-PS, we combined these single therapeutic strategies to enhance the regenerative capacity of injured spinal cord tissue. The animals survived eight weeks. Application of Y-27632 modulated the inhibitory milieu by specifically targeting gray and white matter integrity, glial fibrillary acidic protein (GFAP)-immunoreactivity, and the outgrowth of neurofilaments and growth-associated protein-43 (GAP-43) immunoreactive axons across the lesion sites, leading to significant positive functional outcome from day 20 to 56. Compared to single treatments, combined Y-27632/ChC-PS therapy was more effective in neurofilaments and GAP-43 expression and GFAP immunoreactivity in the perilesional area of dorsal, lateral and ventral columns, and in enhancing the gray and white matter integrity throughout the cranio-caudal extent. The findings indicate that combined therapy provides a supportive environment for endogenous regenerative processes.

Keywords


Y27632; Th9 compression; cranio-caudal extent; axonal regeneration; spinal cord

Full Text:

PDF

References


Abou Neel E.A., Bozec L., Knowles J.C., Syed O., Mudera V., Day R., Hyun J.K. Collagen -emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev., 65: 429-456, 2013.

Anderson M.A., Burda J.E., Ren Y., Ao Y., O'Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Sofroniew M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532: 195-200, 2016.

Bacova M., Bimbova K., Fedorova J., Lukacova N., Galik J. Epidural oscillating field stimulation as an effective therapeutic approach in combination therapy for spinal cord injury. J. Neurosci. Methods, 311: 102-110, 2019.

Badhiwala J.H., Ahuja C.S., Fehlings M.G. Time is spine: a review of translationa advances in spinal cord injury. J. Neurosurg. Spine, 30: 1-18, 2018.

Bimbova K., Bacova M., Kisucka A., Pavel J., Galik J., Zavacky P., Marsala M., Stropkovska A., Fedorova J., Papcunova S., Jachova J., Lukacova N. A single dose of atorvastatin applied acutely after spinal cord injury suppresses iInflammation, apoptosis, and promotes axon outgrowth, which might be essential for favorable functional outcome. Int. J. Mol. Sci,. 19: 1106, 2018.

Brugnerotto J., Lizardi J., Goycoolea F.M., Argüelles-Monal W., Desbrières J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42: 3569-3580, 2001.

Citron B.A., Smirnova I.V., Arnold P.M., Festoff B.W. Upregulation of neurotoxic. serine proteases, prothrombin, and protease-activated receptor 1 early after spinal cord injury. J. Neurotrauma, 17: 1191-1203, 2000.

Collard J.F., Côté F., Julien J.P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375: 61-64, 1995.

Conrad S, Schluesener HJ, Trautmann K, Joannin N, Meyermann R, Schwab JM. Prolonged lesional expression of RhoA and RhoB following spinal cord injury. J. Comp. Neurol., 487: 166-175, 2005.

Dubreuil C.I., Winton M.J., McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J. Cell Biol, 162: 233-243, 2003.

Dupraz S., Hilton B.J., Husch A., Santos T.E., Coles C.H., Stern S., Brakebusch C., Bradke F. RhoA Controls Axon Extension Independent of Specification in the Developing Brain. Curr. Biol., 29: 3874-3886.e9, 2019.

Fedorova J., Pavel J. An Accurate Method for Histological Determination of Neural Tissue Loss/Sparing after Compression-Induced Spinal Cord Injury with Optimal Reproducibility. J. Neurotrauma, 36: 2665-2675, 2019.

Fehlings M.G., Kim K.D., Aarabi B., Rizzo M., Bond L.M., McKerracher L., Vaccaro A.R., Okonkwo D.O. Rho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the Spinal Cord Injury Rho Inhibition Investigation (SPRING) Clinical Trial. J. Neurotrauma, 35: 1049-1056, 2018.

Freier T., Montenegro R., Shan Koh H., Shoichet M.S. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials, 26: 4624-4632, 2005a.

Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 26: 5872-5878, 2005b.

Friedli L., Rosenzweig E.S., Barraud Q., Schubert M., Dominici N., Awai L., Nielson J.L., Musienko P. et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci. Transl. Med., 7: 302ra134, 2015.

Fu C., Hao S., Xu X., Zhou J., Liu Z., Lu H., Wang L., Jin W. et al. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial..tight junction permeability. Acta Pharmacol. Sin, 40: 630-641, 2019.

Gedrova S., Galik J., Marsala M., Zavodska M., Pavel J., Sulla I., Gajdos M., Lukac I. et al. Neuroprotective effect of local hypothermia in a computer-controlled compression model in minipig: Correlation of tissue sparing along the rostro-caudal axis with neurological outcome. Exp. Ther. Med. 15: 254-270, 2018.

Gervasi C., Thyagarajan A., Szaro B.G. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J. Comp. Neurol., 461: 262-275, 2003.

Hasel P., Dando O., Jiwaji Z., Baxter P., Todd A.C., Heron S., Márkus N.M., McQueen J. et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun., 8: 15132, 2017.

Hoffman P.N., Cleveland D.W. Neurofilament and tubulin expression recapitulates .the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc. Natl. Acad. Sci. USA., 85: 4530-4533, 1988.

Hyun J.K., Kim H.W. Clinical and experimental advances in regeneration of spinal cord injury. J. Tissue Eng., 650857, 2010.

Impellizzeri D., Mazzon E., Paterniti I., Esposito E., Cuzzocrea S. Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J. Pharmacol. Exp. Ther., 343: 21-33, 2012.

Jacobs A.J., Swain G.P., Snedeker J.A., Pijak D.S., Gladstone L.J., Selzer M.E. Recovery of neurofilament expression selectively in regenerating reticulospinal neurons. J. Neurosci., 17: 5206-5220, 1997.

Joosten E.A. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell Tissue Res., 349: 375-395, 2012.

Kawano H., Kimura-Kuroda J., Komuta Y., Yoshioka N., Li H.P., Kawamura K., Li Y., Raisman G. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res., 349: 169-180, 2012.

Kjell J., Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis. Model Mech., 9: 1125-1137, 2016.

Kriz J., Zhu Q., Julien J.P., Padjen A.L. Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res., 885: 32-44, 2000.

Leenen L.P., Meek J., Posthuma P.R., Nieuwenhuys R. A detailed morphometrical analysis of the pyramidal tract of the rat. Brain Res., 359: 65-80, 1985.

Lépinoux-Chambaud C., Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem. Cell Biol., 140: 13-22, 2013.

Li W., Long Y., Liu Y., Long K., Liu S., Wang Z., Wang Y., Ren L. Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering. J. Biomater. Sci. Polym, . 25: 1962-1972, 2014.

Liu M., Wu W., Li H., Li S., Huang L.T., Yang Y.Q., Sun Q., Wang C.X. et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord Med., 38: 745-753, 2015.

Liu X.Y., Liang J., Wang Y., Zhong L., Zhao C.Y., Wei M.G., Wang J.J., Sun X.Z. et al. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. J. Mater. Sci. Mater. Med., 30: 123, 2019.

Liu X.Z., Xu X.M., Hu R., Du C., Zhang S.X., McDonald J.W., Dong H.X., Wu Y.J. et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci., 17: 5395-5406, 1997.

Lord-Fontaine S., Yang F., Diep Q., Dergham P., Munzer S., Tremblay P., McKerracher L., Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury. J. Neurotrauma, 25: 1309-1322, 2008.

Madura T., Yamashita T., Kubo T., Fujitani M., Hosokawa K., Tohyama M. Activation of Rho in the injured axons following spinal cord injury. EMBO Rep., 5: 412-417, 2004.

Malbouisson A.M., Ghabriel M.N., Allt G. Axonal microtubules: a computer-linked quantitative analysis. Anat. Embryol. (Berl), 171: 339-344, 1985.

Marszalek J.R., Williamson T.L., Lee M.K., Xu Z., Hoffman P.N., Becher M.W., Crawford T.O., Cleveland D.W. Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J. Cell Biol., 135: 711-724, 1996.

McKerracher L., Essagian C., Aguayo A.J. Temporal changes in beta-tubulin and neurofilament mRNA levels after transection of adult rat retinal ganglion cell axons in the optic nerve. J. Neurosci., 13: 2617-2626, 1993.

McKerracher L., Guertin P. Rho as a target to promote repair: translation to clinical studies with cethrin. Curr. Pharm. Des., 19: 4400-4410, 2013.

Muma N.A., Hoffman P.N., Slunt H.H., Applegate M.D., Lieberburg I., Price D.L. Alterations in levels of mRNAs coding for neurofilament protein subunits during regeneration. Exp. Neurol., 107: 230-235, 1990.

Nishida F., Sisti M.S., Zanuzzi C.N., Barbeito C.G., Portiansky E.L. Neurons of the rat cervical spinal cord express vimentin and neurofilament after intraparenchymal injection of kainic acid. Neurosci Lett., 643: 103-110, 2017.

Ohara O., Gahara Y., Miyake T., Teraoka H., Kitamura T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol., 121: 387-395, 1993.

Orive G., Anitua E., Pedraz J.L., Emerich D.F. Biomaterials for promoting brain protection, repair and regeneration. Nat. Rev. Neurosci,. 10: 682-692, 2009.

Pineau I., Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol., 500: 267-285, 2007.

Price R.L., Paggi P., Lasek R.J., Katz M.J. Neurofilaments are spaced randomly in the radial dimension of axons. J. Neurocytol., 17: 55-62, 1988.

Raad M., El Tal T., Gul R., Mondello S., Zhang Z., Boustany R.M., Guingab J., Wang K.K. et al. Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma. Electrophoresis, 33: 3659-3668, 2012.

Sakaguchi T., Okada M., Kitamura T., Kawasaki K. Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci. Lett., 153: 65-68, 1993.

Straley K.S., Foo C.W., Heilshorn S.C. Biomaterial design strategies for the treatment of spinal cord injuries. J. Neurotrauma, 27: 1-19, 2010.

Tashiro T., Imai R., Komiya Y. Early effects of beta,beta'-iminodipropionitrile on tubulin solubility and neurofilament phosphorylation in the axon. J. Neurochem., 63: 291-300, 1994.

Tetzlaff W., Kobayashi N.R., Giehl K.M., Tsui B.J., Cassar S.L., Bedard A.M. Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog. Brain Res., 103: 271-286, 1994.

Wang J., Li H., Yao Y., Ren Y., Lin J., Hu J., Zheng M., Song X. et al. β-Elemene Enhances GAP-43 Expression and Neurite Outgrowth by Inhibiting RhoA Kinase Activation in Rats with Spinal Cord Injury. Neuroscience, 383: 12-21, 2018.

Yuan A., Hassinger L., Rao M.V., Julien J.P., Miller C.C., Nixon R.A. Dissociation of Axonal Neurofilament Content from Its Transport Rate. PLoS One, 10: e0133848, 2015.

Zhang G., Jin L.Q., Hu J., Rodemer W., Selzer M.E. Antisense Morpholino Oligonucleotides Reduce Neurofilament Synthesis and Inhibit Axon Regeneration in Lamprey Reticulospinal Neurons. PLoS One, 10: e0137670, 2015.

Zhu Q., Couillard-Després S., Julien J.P. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol., 148: 299-316, 1997.

Zhu Q., Lindenbaum M., Levavasseur F., Jacomy H., Julien J.PDisruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta'-iminodipropionitrile. J. Cell Biol., 143: 183-193, 1998.




DOI: https://doi.org/10.12871/aib.v159i3-4.4769

Refbacks

  • There are currently no refbacks.