Histopathological evaluation of IBA-1, GFAP activity in the brain cortex of rats administered cadmium chloride

E. Gök, E. Deveci


Purpose: This study aims to evaluate the changes in brain tissue and blood-brain barrier due to oxidative stress during cadmium (Cd) poisoning by biochemical, histopathological, and immunohistochemical methods. Methods: 170-190 g weighing eight-week-old female Wistar albino rats were divided into two groups (control and experimental), with 7 animals in each group. Experimental group rats were given 2 mg/kg/day powdered cadmium chloride dissolved in water intraperitoneally every day for two weeks. Biochemical, histopathological and immunohistochemical examination was performed.

Results: It was seen that brain malondialdehyde (MDA) levels increased significantly, and glutathione (GSH) and catalase (CAT) activity levels decreased. In addition to degeneration in some pyramidal cells and glial cells, deformity, and picnosis in the nucleus, dilation of the meninges and cortex vessels, and inflammation around the blood vessels were observed. An increase was found in ionized calcium binding adaptor molecule 1 (IBA- 1) expression in microglia cells and degenerative endothelial cells, and increased glial fibrillary acidic protein (GFAP) expression was observed in astrocytes and degenerate neurons.

Conclusions: It has been shown that cadmium toxicity may cause microgliosis and astrogliogenesis by inducing cytokine production due to cell degeneration, vascularity, and inflammation in the brain cortex and by affecting microglia, astrocytes cells.


Cadmium • brain tissue • blood-brain barrier • oxidative stress • toxicity

Full Text:




Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191(7):419. doi: 10.1007/s10661-019-7528-7.

Hung YM, Chung HM. Acute self-poisoning by ingestion of cadmium and barium. Nephrol Dial Transplant. 2004;19(5):1308-9. doi: 10.1093/ndt/gfh169.

Maret W, Moulis JM. The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci. 2013;11:1-29. doi: 10.1007/978-94-007-5179-8_1.

Shukla A, Shukla GS, Srimal RC. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol. 1996;15(5):400-5. doi: 10.1177/096032719601500507.

Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529-39. doi: 10.2174/1568026013394831.

Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161-208. doi: 10.2174/0929867053764635.

Ognjanović BI, Marković SD, Ethordević NZ, Trbojević IS, Stajn AS, Saicić ZS. Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes: protective role of coenzyme Q(10) and vitamin E. Reprod Toxicol. 2010;29(2):191-7. doi: 10.1016/j.reprotox.2009.11.009.

Karoui D, Kaddour H, Hamdi Y, Mokni M, Mohamed A, Mezghani S. (2017) Response of antioxidant enzymes to cadmium-induced cytotoxicity in rat cerebellar granule neurons. Open Life Sciences. 2017;12:113-119. doi: 10.1515/biol-2017-0013

Shagirtha K, Bashir N, MiltonPrabu S. Neuroprotective efficacy of hesperetin against cadmium induced oxidative stress in the brain of rats. Toxicol Ind Health. 2017;33(5):454-468. doi: 10.1177/0748233716665301.

Yuan W, Chen Q, Zeng J, Xiao H, Huang ZH, Li X, Lei Q. 3'-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regen Res. 2017;12(2):235-241. doi: 10.4103/1673-5374.200807.

Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ. Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem. 2006;54(26):9798-804. doi: 10.1021/jf0620719.

Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW. Actin-binding proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem. 2007;55(7):687-700. doi: 10.1369/jhc.6A7156.2007.

Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenström H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45(1):138-41. PMID: 9895354.

Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV. Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood-brain barrier permeability. Neurol Res. 2010;32(6):629-35. doi: 10.1179/016164109X12464612122731.

Ognjanović BI, Marković SD, Pavlović SZ, Žikić RV, Stajn AS, Saičić ZS. Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res. 2008;57(3):403-411. doi: 10.33549/physiolres.931197.

Viaene MK, Roels HA, Leenders J, De Groof M, Swerts LJ, Lison D, Masschelein R. Cadmium: a possible etiological factor in peripheral polyneuropathy. Neurotoxicology. 1999;20(1):7-16. PMID: 10091854.

Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev. 2013;2013:898034. doi: 10.1155/2013/898034.

Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003;192(1):1-11. doi: 10.1016/s0041-008x(03)00251-5.

Elkhadragy MF, Kassab RB, Metwally D, Almeer RS, Abdel-Gaber R, Al-Olayan EM, Essawy EA, Amin HK, Abdel Moneim AE. Protective effects of Fragaria ananassa methanolic extract in a rat model of cadmium chloride-induced neurotoxicity. Biosci Rep. 2018;38(6):BSR20180861. doi: 10.1042/BSR20180861.

Yu HM, Yuan TM, Gu WZ, Li JP. Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection. Neuropathology. 2004;24(2):136-43. doi: 10.1111/j.1440-1789.2003.00539.x.

Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7-35. doi: 10.1007/s00401-009-0619-8.

Struzynska L, Dabrowska-Bouta B, Koza K, Sulkowski G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci. 2007;95(1):156-62. doi: 10.1093/toxsci/kfl134.

Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci. 2000;113 ( Pt 17):3073-84.

Liu JT, Chen BY, Zhang JQ, Kuang F, Chen LW. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol Lett. 2015;239(2):97-107. doi: 10.1016/j.toxlet.2015.09.015.

Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect. 2004;112(10):1099-103. doi: 10.1289/ehp.6751.

Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 2006;7(2):119-26. doi: 10.1016/S1470-2045(06)70545-9.

Bernard A. Cadmium & its adverse effects on human health. Indian J Med Res. 2008 Oct;128(4):557-64. PMID: 19106447.

Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182-90. doi: 10.1289/ehp.0901234.

Söderholm M, Borné Y, Hedblad B, Persson M, Barregard L, Engström G. Blood cadmium concentration and risk of subarachnoid haemorrhage. Environ Res. 2020;180:108826. doi: 10.1016/j.envres.2019.108826.

Orisakwe OE. The role of lead and cadmium in psychiatry. N Am J Med Sci. 2014;6(8):370-6. doi: 10.4103/1947-2714.139283.

Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi: 10.2174/1570159x13666150716165726.

Karri V, Schuhmacher M, Kumar V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. 2016;48:203-213. doi: 10.1016/j.etap.2016.09.016.

Abdel-Aleem GA, Khaleel EF. Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem. 2018;124(4):367-377. doi: 10.1080/13813455.2017.1411370.

Pulido G, Treviño S, Brambila E, Vazquez-Roque R, Moreno-Rodriguez A, Peña Rosas U, Moran-Perales JL, Handal Silva A, Guevara J, Flores G, Diaz A. The Administration of Cadmium for 2, 3 and 4 Months Causes a Loss of Recognition Memory, Promotes Neuronal Hypotrophy and Apoptosis in the Hippocampus of Rats. Neurochem Res. 2019;44(2):485-497. doi: 10.1007/s11064-018-02703-2.

P M MM, Shahi MH, Tayyab M, Farheen S, Khanam N, Tabassum S, Ali A. Cadmium-induced neurodegeneration and activation of noncanonical sonic hedgehog pathway in rat cerebellum. J Biochem Mol Toxicol. 2019;33(4):e22274. doi: 10.1002/jbt.22274.

DOI: https://doi.org/10.12871/aib.v160i1-2.4881


  • There are currently no refbacks.